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Abstract

This paper presents a theoretical study of a piezoelectric annular cylinder under axisymmteric electromechanical
loading. The piezoelectric material is assumed to be transversely isotropic and the general solutions of the governing
equations are obtained in terms of a Fourier—Bessel series containing Bessel functions of the first and second kind.
The boundary-value problems for vertical pressure and an electric charge loading applied to the ends of an annular
cylinder are solved by expanding the applied loading in terms of a Fourier—Bessel series. Selected numerical results
for the electroelastic field of an annular cylinder are presented for different aspect ratios of a cylinder and material
properties.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric elements are commonly used as sensors and actuators in adaptive structures (Matsuzaki,
1997). Piezoelectric materials generate an electric charge in response to mechanical deformations. Con-
versely, these materials produce mechanical strains under an applied electric field. Piezoelectric materials
are available in a wide variety of shapes and sizes and can be distributed along a structure without greatly
increasing its mass. Brittle behaviour and electric fatigue are two major concerns that limit industrial appli-
cations of piezoelectric materials. Among the many types of piezoelectric elements, the cylindrical (solid
and hollow) shape is used in a broad range of practical applications such as resonators, actuators, fuel
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injectors, atomic force microscopes, high-precision telescopes, etc. The study of electroelastic field of a pie-
zoelectric cylinder under combined electromechanical loading is therefore one of the fundamental problems
of adaptive structures technology. Electric field and stress concentration in a cylindrical element could lead
to dielectric breakdown, electrode delamination and fracture. Furthermore, tensile stresses due to applied
loading could lead to tensile fracture as the tensile strength of these materials is relatively low.

Stress analysis of elastic solid and annular cylinders of infinite length is one of the fundamental problems
in elasticity and has a rich history (Levin and Klosner, 1967; Atsumi and Itou, 1974; Kasano et al., 1982).
The three-dimensional problem of a finite cylinder is much more complicated than that of an infinite cyl-
inder. An isotropic finite cylinder under axial compression was analyzed by Pickett (1944) by using a multi-
ple Fourier—Bessel series solution. A similar analysis for a constrained cylinder under end compression was
done by Moghe and Neff (1971). Power and Childs (1971) presented a solution for an isotropic circular bar
of finite length subjected to axi-symmetric tractions and/or displacements on either or both ends. The anal-
ysis of a transversely isotropic finite cylinder with a stress-free lateral surface was considered by Vendhan
and Archer (1977) by using a displacement potential. Okumura (1987, 1989) used the generalized Elliott’s
solution (Elliott, 1948) to analyze a transversely isotropic, short hollow cylinder subjected to an outer band
load. The analytic solutions for a finite transversely isotropic solid cylinder under different surface loads
were presented by Wei et al. (1999); Chau and Wei (2000) and Wei and Chau (2002). These authors used
the Lekhnitskii’s stress functions (Lekhnitskii, 1963) to uncouple the equations of equilibrium. A new
Fourier—Bessel series expansion of the stress function was proposed so that all boundary conditions can
be exactly satisfied. It is noted here that study of free vibration of elastic cylinders was done long before
the above studies dealing with cylinders under external static loading. Pochhammer in 1876 and Chree
in 1889 determined the natural frequencies and mode shapes of an infinite ideal elastic cylinder (Love,
1944). Numerous other studies have followed the classical work of Pochhammer and Chree (Miklowitz,
1984). Hutchinson (1972, 1980) derived theoretical solutions for free vibrations of a finite elastic cylinder
and presented a concise review of past studies related to free vibrations of infinite and finite cylinders.

Past studies on elastic cylinders provide a strong foundation for advancement of theoretical analysis of
piezoelectric cylinders. Parton and Kudryavtsev (1988) present the general theory and solutions for a vari-
ety of problems of linear piezoelectricity. The classical solution of Pochhammer for flexural free vibrations
of an infinite elastic cylinder was extended to the piezoelectric case by Paul (1966). The frequency equation
becomes more complex for the piezoelectric case although the radial and vertical variations of the mode
shapes are similar to the ideal elastic solution. Parton and Kudryavtsev (1988) presented the basic theory
of wave propagation and considered a wide range of free vibration problems related to plates, cylinders and
layered systems. They also presented an axisymmetric general solution for piezoelectricity by using Hankel
integral transforms. Paul and Natarajan (1994a,b) considered the free vibration of a finite piezoelectric cyl-
inder by extending the concepts proposed by Hutchinson (1972, 1980).

The study of infinite piezoelectric cylinders under external loading has received some attention in the
past. Rajapakse (1996) and Rajapakse and Zhou (1997) used Fourier integral transforms to derive an ana-
lytic solution for an infinite piezoelectric cylinder and an infinite composite cylinder subjected to axisym-
metric electromechanical loading. They examined the effects of coupling between mechanical and electric
fields in a long cylinder and a composite cylinder and their solution can be easily extended to study the
interaction between a piezoelectric fibre and a surrounding elastic medium.

A theoretical study of electromechanical response of a piezoelectric finite annular cylinder under exter-
nally applied mechanical and electric loading has not appeared in the literature. Therefore, the main objec-
tive of this study is to develop the analytical general solutions for a finite annular cylinder and examine the
response of cylinders under some fundamental loading such as vertical pressure and electric charge loading
applied to the ends of a cylinder. A set of potential functions are used to transform the governing equations
expressed in terms of displacements and electric potential to a set of Laplace equations. The general solu-
tions for Laplace equations are obtained in terms of a Fourier—Bessel series containing Bessel functions of
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the first and second kind. Analytical general solution for the complete electroelastic field is presented and
these solutions can be used to solve a wide range of boundary-value problems involving finite piezoelectric
cylinders. The applied electromechanical loading of a cylinder is expressed in terms of a Fourier—Bessel ser-
ies to determine the solutions for arbitrary functions appearing in the general solutions. Selected numerical
results for different cylinder dimensions are presented for uniform vertical pressure and electric charge load-
ing applied to the cylinder ends.

2. Analytical general solution

Fig. 1 shows a piezoelectric annular cylinder of inner radius a, outer radius b and height 24 under axi-
symmetric electromechanical loading applied to the boundary. A cylindrical polar coordinate system (r, 0, z)
is used with the z-axis along the axis of symmetry of the cylinder. The cylinder is made out of a transversely
isotropic piezoelectric material or a poled ceramic with the poling direction parallel to the z-axis.

The constitutive equations for piezoelectric materials which are transversely isotropic or poled along the
z-axis can be expressed as (Parton and Kudryavtsev, 1988),

O = Cl18m + C12800 + C1362; — €31E; (la)
Op9 = C12&y + Cl1800 + C138: — €31E; (1b)
0.: = C13&, + C138p9 + C336.; — ek, (1c)
0y = 2C446,- — e15E, (1d)
D, = 2ei5¢,. + e11Ey; D, = e316, + 31800 + €336 + &3k (le)

where g, ¢;, D; and E; denote the components of stress tensor, strain tensor, electric displacement vector
and electric field vector respectively; ¢11, ¢12, €13, ¢33 and c44 are elastic constants under zero or constant
electric field; es3;, e33 and e;s are piezoelectric constants; and ¢;; and &35 are dielectric constants under zero
or constant strain.
The field equations for the axisymmetric case are
aarr aO-rz G — 000 aGrz a‘:)-zz &

or Oz r or Oz o 0 (22)

Fig. 1. Annular piezoelectric cylinder under vertical loading and the coordinate system.



3490 R.K.N.D. Rajapakse et al. | International Journal of Solids and Structures 42 (2005) 3487-3508

oD, oD. D,
=

or Oz r 0 (2b)

Eq. (2a) represents the classical equilibrium equation in the absence of body forces and Eq. (2b) is the
Gauss’ equation representing the balance of electric flux in a charge-free medium. The strain—displacement
relations are

~ Ou, u, Ou 1 (au, auz>

Epr or 5 Epp = 7a &z = Ev & = E g + or (3)
where u, and u, denote the displacements in the r- and z-directions respectively.
The relationship between the electric field E; (i = r,z) and the electric potential ¢ can be expressed as
0¢ 0¢
E =——: E =—— 4
" o’ Oz (4)
To facilitate the derivation of the analytic solution, the following potential function representation is intro-
duced (Rajapakse, 1996; Rajapakse and Zhou, 1997; Ding et al., 1996).
oy oy Casky O
r= A z = k P = A, 5
“ or " 'z ¢ ey Oz (3)
where (r,z) denotes a potential function, and k; and k, are unknown constants to be determined.
Combination of Egs. (1) to (5) leads to the following set of governing equations expressed in terms of

Y(r,z).

2

Oy 19 0
cl <6—rlf + P a_l/r/> + [caa + ki (c13 + caa) + ka(e31 + ey5)] 6—;/21 =0 (6a)
(casky + c13 + caa + k)az—¢+1% + ekt + k]az—lp—o (6b)
C44K1 T C13 T Cagq T €15K2 2 " or C33K1 T €33K2 2
(e1sky + es1 + ers — e11ks) azlJrl% + ek — ¢ k]az—lp*O (6¢)
€15k T €31 T €5 W\ 52 7 o €331 Bhlaz =

Before proceeding to solve the above governing equations, it is prudent to define a set of nondimensional
field variables. Typical values of elastic, piezoelectric and dielectric constants of piezoelectric materials are
different by many orders of magnitude and this could lead to precision and numerical instability problems
during the calculation of numerical solutions. The coordinates r and z and the displacements u, and u, are
nondimensionalized by the outer radius b which is set as the nondimensional unit length parameter. The
stresses and elastic constants are nondimensionalized by c44. The electric displacements and piezoelectric
constants are nondimensionalized by e3;. For convenience, the nondimensional coordinates, displace-
ments, stresses, electric displacements, elastic constants and piezoelectric constants are denoted by the
same symbols without loss of generality. In addition, the following nondimensional quantities are
introduced.

- €3] — Y - Ca4 _ Caq
= — N = — & = —&11: & = —¢& 7
¢ C44b¢’ v B 11 e§1 11; €33 €§1 33 (7)

Using the nondimensional quantities, Egs. 5 and (6a)—(6¢c) are changed to:

W W
—a, uz—klgy ¢—k2§

Uy
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Y 10 oMy
l(a—rf+r alp) +[1+k1(1+€13)+k2(1+€15)]a—2l2p:0 (Sb)
Oy 13y o'y
(kl +c13 + 1+ e15k2) o == + - B 6}") —+ [C33k1 =+ e33k2]§ =0 (8C)
_ Oy 10y Y
(erskr + 1+ e1s — 211k2) el 6_> + [esski — 833@]@ =0 (8d)

All nondimensional material properties appearing in the above governing equations have similar orders of
magnitude and k; and k, are also dimensionless constants. A nontrivial solution of Egs. (8b)—(8d) exists if
and only if,

1+ 1+ i)k + (1 +es)kr _ ek + esshy _ (92)
ci1 ki +1+ci3 +eiskr

1+ (1+ciz)kr + (1 +es)ks _ ek — €33k _; (9b)
i eisky +14eis —enky

where / is a dimensionless constant to be determined.
Egs. (92) and (9b) have three unknowns ki,k, and A. Eliminating k; and k, in Eqgs. (9a) and (9b), the
following cubic equation of A is obtained.

QP+ Q4+ Q304 Q,=0 (10)

where the coefficients Q; (i =1,2,3,4) are constants expressed in terms of material properties and are de-
fined in the Appendix (Eq. (A.1)).

The three roots of Eq. (10) are denoted by 4;(i = 1,2,3) with 4; assumed to be a positive real number
and A, and 45 are either positive real numbers or a pair of complex conjugates with positive real parts. For
each root of Eq. (10), the Egs. (9a) and (9b) yield the solutions for k; and k,. It is convenient to denote the
corresponding solutions by k; (i = 1,2; j = 1,2,3) where the subscript ; identifies the corresponding root /.

In view of the three roots A; obtained from Eq. (10), the Eqs. (8b)—(8d) yield the solutions for the three
potential functions ¥, (i = 1,2,3) governed by,

oy, 1oy, Y,
or? Jr; or + 4 0z2

=0 (i=1,2,3) (11)

Assuming that roots 4; are unequal, the solutions for potential function ¥(r,z), elastic displacements and
electric potential can be rewritten in terms of ; by using Eqgs. (8a) and (11) as

szl Jszers (12a)
o — — 0 0 0
u,:§(lﬁl+%+l//3); u, = ki éﬂl-l-klz :24-1(13 a‘i@ (12b)
oy, oy, Ay
¢ = ko —— 5, thep thng (12¢)

The solution for the potential function \ for the general case that includes equal roots is given in Appendix
(Eq. (A.2)) and the Eq. (12) can be accordingly modified.
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Eq. (11) can be expressed in the following form.

O, 13g, | O,

o2 ror 0z

where z; = z/\/4;.
The solution of Eq. (13) is given by (Bland, 1961),

W, = [AJo(tr) + BY(tr)][C; cosh(tz;) + F;sinh(z;)] (i =1,2,3) (14)
where Jy(zr) and Y(tr) are Bessel functions of the first and the second kind of zero order, respectively
(Bland, 1961); cosh(#z;) and sinh(zz;) are hyperbolic cosine and sine functions, respectively; and ¢, 4, B, C;
and F; (i=1,2,3) are arbitrary functions to be determined.

On the other hand, Eq. (11) can also be expressed in the following form.

. 10y, 4,
1z . 17 L 1z

=0 (i=1,2,3) (13)

o tnon Taz 0 =123 (15)
where 7; = \/Z;r.
The solution of Eq. (15) is given by (Bland, 1961),
W, = [Gilo(sr;) + LiKo(sr;)][Pcos(sz) + Rsin(sz)] (i =1,2,3) (16)

where Iy(sr;) and Ky(sr;) are the modified Bessel functions of the first and second kind of zero order, respec-
tively (Bland, 1961); and s, G;, L;, P and R(i = 1,2,3) are arbitrary functions to be determined. Therefore,
the general solution of Eq. (11) can be expressed as,

W, = [AJo(tr) + BY o (#r)][C; cosh(tz;) + F; sinh(z;))
+ [Gilo(s7;) + LiKo(s7;)][Pcos(sz) + Rsin(sz)] (i=1,2,3) (17)

For the axisymmetric case, the potential function should contain only even functions of z. In addition to the
solution given by Eq. (17), it is necessary to include the potential functions for the radially symmetric plane
problem of an annular cylinder and that of a long bar for the completeness of the general solution. There-
fore, the complete general solution of the potential function ¥ in Eq. (8a) can be expressed as,

3
J :B01 lnrJr ZAO[(VZ - 2212)
i=1

3 00 00

+y° {Z[A,—mjo(tmr) + BinYo(tur)] cosh(tuz) + > _[Gilo(suri) + LiuKo(s,77)] cos(s,,z)} (18)
i=1 m=1 n=1

where s, = and A, Bin, Giny Lin, Aoi (i=1,2,3) and By, are arbitrary functions and ¢,, is a constant.

These unknown quantities have to be determined from the boundary conditions.

To facilitate the solution of boundary-value problems, the general solutions for displacements, stresses,
etc. are expressed as sum of three parts: (a) the first part denoted by superscript ‘0’ corresponds to the first
two terms of the right hand side of Eq. (18); (b) the second part denoted by superscript ‘1’ corresponds to
the series containing the Bessel functions of the first and the second kind in Eq. (18); (c) the third part de-
noted by superscript 2’ corresponds to the series containing modified Bessel functions of the first and the
second kind in Eq. (18).

The corresponding general solutions of displacements and electric potential are:

1 3 3 A i —(0 3 A i
u®(r) = ~Bui + 2;A0ir; U (z) = _4;1{”702; 7" () = —4;1{2,7% (19a)

i 1 1
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3 00
uM(r,2) = =" tuldin 1 (tur) + Bin Y1 (17)] cosh(t,,z:) (19b)
i=l m=1
3 00 ¢
WDz = kY A [Ain 0 (twr) + Bim Yo (tnr)] sinh (£,2;) (19¢)
i=1 m=1 i
—m 3 00 ¢
¢ (r2)=> kny /1 [Ain o (tr) + Bin Yo (£,07)] sinh(z,,z;) (19d)
i=1 m=1 i
3 0
uP(r,2) =3 N Jisa[Gind 1 (suri) — LK1 (s,74)] c08(s,,2) (19)
i=1 n=1
3 0
uP(r,z) = = ki > su[Gilo(suri) + LuKo(s,r:)] sin(s,2) (19f)
i=1 n=1
— 3 00
¢ (rz) == ku > _suGulo(suri) + LuKo(s,r:)] sin(s,z) (19g)
i=1 n=1

The general solutions of stresses and electric displacements are given in the Appendix (Egs. (A.3)-(A15)).
According to authors’ knowledge the above general solution for a piezoelectric finite annular cylinder is a
new contribution. The general solution for a solid cylinder can be obtained by setting the terms containing
Bessel functions of the second kind and modified Bessel functions of the second kind to zero.

3. Electromechanical loading of annular cylinder

In this section an annular cylinder subjected to two basic cases of electromechanical loading is analyzed
by using the general solutions derived in the preceding section. First consider the case of a cylinder under
normal pressure applied to the top and bottom ends (Fig. 1). Assume that all surfaces of the cylinder are
electrically impermeable and the inner and outer cylindrical surfaces are stress free.

The boundary conditions can be expressed as follows:

on(a,z) =0, o0,.(a,z)=0, D.a,z)=0 for —h<z<h (20a)
0,(1,z)=0, 0.(1,z)=0, D,(l,z)=0 for —h<z<h (20b)
o.(r,xth)=—p(r), o,(r,xh)=0, D.(r,£h)=0 fora<r<1 (20c¢)

where p(r) denotes the nondimensional intensity of the normal pressure applied on the top and bottom sur-
faces of the cylinder.

The boundary conditions expressed by Egs. (20a)—(20c) have to be used to determine the arbitrary func-
tions A;,, Bi, Gi, and L, (i =1,2,3; m,n=1,2,...,00) appearing in the general solutions. Given the com-
plexity of the analytical general solutions, it is prudent to apply the boundary conditions in a systematic
way to solve for the arbitrary functions. First consider the boundary condition o., = 0 at z = +A. Noting
that ¢” and ¢ vanish at z=+h, the boundary condition, o., = ¢\¥ + ¢\l + ¢!? =0, is reduced to
o'l = 0. Then using Eq. (A.8) and noting that this boundary condition has to be satisfied for a < r < 1,
the following relationships can be obtained.
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3

3
> 0 Z Ag sinh(t,h) =0 Y 0, Z By sinh(,,h;) = 0 (21)

i=1 i=1 m=1

where h; = h/\/4;.

Using Eq. (21), express Ay, in terms of A,,, and A3, and By, in terms of B,,, and Bj,, as

Alm = almAZm + aZmASm; Blm = OClmBZm + o‘2mB3m (22)
where
¥, sinh (¢, %3 sinh(z,,h
oy = — 2sinh(z,h) | by = — 3 sinh(#,/13) (23)

’191 Sil’lh(t,nhl) ’ 191 Sinh(t,,,hl)
Substitution of Eq. (22) into Eq. (A.8) leads to,

ol (r,z) Zt {91 sinh(¢,,z;)ot1,, + V2 sinh(2,2:)][J1 (£7) A2m + Y1 (207)Bom)

m=1

+[’l91 Sinh(th,-)(sz —+ ’193 sinh(tmz,»)][Jl (fml")A3m —+ Y1 (tm}")B3m]} (24)

Noting that the shear stress boundary conditions on the inner and outer cylindrical surfaces (r = a, 1) have
to be satisfied for —4 < z < A, the following conditions can be established.

o a,z) =V, g a,z) =V, g zZ) =V, g zZ) =
Substituting the first condition of Eq. (25) in Eq. (24) yields,
Yl (tma) Y1 (l,,,a)
Am:_ ms Am:_ B;m 26
? Ji(twa) 2 Ji(twa) > (26)

Then substituting Eq. (26) into Eq. (24) and imposing the third condition of Eq. (25) yields the following
transcendental equation to determine #,,,.

Jl(tm)Yl(tma) — Jl(tma)Yl (tm) =0 (27)

The arbitrary functions Gy, and G, can now be expressed in terms of G3, and L;,(i = 1,2, 3) by substituting
the second and fourth boundary conditions of Eq. (25) in Eq. (A.13). Therefore,

2(@)0 — 13(@))Gn + 2(@)E, + 1(a) L
G = . (51 (28a)

3
- <£OG3n + Z éil‘in> (28b)
i=1

where
P(r) = didi (suri);  1i(r) = 94K (s,ry) (1=1,2,3) (29a)
_Vl(a)"/3(1)_"/1(1)’/3(a), »:yl(l)xi(a)—yl(a);c[(l) i=
= 71(@)n2(1) =y (D)ya(a)’ - 71(@)pa(1) =71 (1)72(a) ((=123) (296)

Until now only shear stress boundary condition of the cylinder has been used (o.,=0 at r=a,1 and
z=+h) and the unknowns 41,,,, 42,,,, A3,m, B> G1,, and G»,, are expressed in terms of the remaining arbi-
trary constants.
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Next, consider the normal stress and normal electric displacement boundary conditions given by Eq.
(20c). Substituting the Egs. (22) and (26) in Eq. (A.7) yields,

ol (r,z) = > 2 {01 cosh(tyz1 )y + 02 €O8h(22) |Bay + [01 COSh(4,21) 02 + 13 COSh(1,,23) B3  Ho (£7)

m=1
(30)
where
_ Y (tma) .
H(tar) = = J 2T ) + 7 ) (G=0.1) (31)
Substitution of Egs. (28a) and (28b) in Eq. (A.12) yields,
Zs { [vli hf(a)%(a)lo(sm) — v22&olo(sur2) + 031310(%”3)} G,
1
+ Z |:l)1}~1 WIO(&J‘I) - 021251'10(&1”2) + Ui/liKO(Snri)]Lin} COS(SnZ) (32)
i=1 1

Next, following an identical procedure, Dgl) can be expressed as,

DV (r,z) = Z 22 { [y cosh(t,,z1 ) o1, + T2 cOSh(t,,22)|Bay, + [11 cosh(t,21) o, + T3 cOSh(2,,23)|Ba Y Ho (t7)
m=1

(33)
and
DP(r,z) = — Zsf,{ [Tl;hl Wlo(snh) — T2k &olo(sa72) + T31310(5;1”3)} G,
n=1 1
3 . I
+ Z |:Tl/ll Wlo(snrl) — T2}~2£i10(snr2) + Tl-/l,-Ko(s,,r,-)]L,-n} COS(S,,Z) (34)
i=1 1
Substitution of Egs. (22) and (26) in Eq. (A.9) yields the following expression for Dgl)
DM (r,z) = {[c) sinh(t21)otm + ¢ Sinh(£,22)]Baw + [¢) sinh(£,21) ot + 3 sinh(£,23) B3y L H 1 (7)
m=1
(35)
Substitution of Egs. (28a) and (28b) in Eq. (A.14) yields,
WW@Z‘Z%“M%%%&%W%%WW+WWFw
n=1 1
3
a)¢; + Kila .
+3° {W i (r) — Emn(r) — pi(r)]Lm} sin(s,z) (36)
i=1 1

w,(r) = Al (sar:);  pi(r) = LK (s,r)  (i=1,2,3) (37)
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Following an identical procedure, ¢{!) can be expressed as,

o0

G,(,,l,)(l",Z) = Z lm{ |:[O(1m COSh(lmZI) + COSh(l‘mZz)] |:011th0(tml") —+ (C“ - 6‘12) 11‘[1 (tmr)}
r

m=1

+tn[p100m cosh(t,zi) + 1 cosh(tmzz)]Ho(tmr)] By, + |:[(sz cosh(z,z1) + cosh(t,z3)]

1
X |:C“Z‘mH0(lml") —+ (C]l - 012) ;Hl (lm}"):| —+ t,,,[xlcxz,,, COSh(l‘le) + X3 COSh(lmZ3)]H0(1m}"):| B3m}

(38)
Using Egs. (28a), (28b) and (A.11), ¢?) can be expressed as,
00 3
o (r,z) = |TouGsn+ Y TiuLin | cOS (5,2) (39)
n=1 i=1

where I';,(i =0,1,2,3) are defined in the Appendix (Egs. (A.17) and (A.18)).

All components of stresses and electric displacements involving the remaining boundary conditions are
now expressed in terms of the arbitrary functions B,,,, Bs,,, G3, and L;,(i = 1,2,3). Assuming that the series
involving m and n indices converge for M and N terms, the remaining boundary conditions of the cylinder
have to be used to determine the (2M + 4N) unknown arbitrary functions appearing in the general solution.
Until now only the shear stress boundary condition is used and the remaining boundary conditions involv-
ing radial and vertical normal stresses and electric displacements can be used to determine the (2M + 4N)
arbitrary functions.

Now consider the boundary condition ¢, = 0 at r = a, which can be expressed as,

(o) + 07 +0,)),_, =0 (40)
Noting that H,(t,,a) =0, Eq. (38) is reduced to

O'S,)(Q,Z) = Z ti{[—cll(ulm COSh(lmzl) + COSh(thZ)) + X1%m COSh(l,,,Zl) + ye) COSh(lmZQ)]Bzm

m=1

+[—c11(ctam cosh(t,z1) + cosh(2,23)) + 1 0m cosh(t,z1) + x5 cosh(t,23)|Ban }Ho(tma) (41)

In order to apply the boundary condition given by Eq. (40) at a constant r value, it is necessary to express
the variation of radial stress in the z-direction in terms of identical functions of z. To achieve this, the hyper-
bolic cosine terms in Eq. (41) are expressed in terms of a Fourier series of the following form:

cosh(z,z;) =y + nyf) cos(s,z) (i=1,2,3) (42)
n=1
where
o _ sinh (tuhi) o 2ty sinh (4,h) cos (nm) 13
Yo ity O hi(2, + Jis2) (43)

Substitution of Eq. (42) in Eq. (41) makes the z-coordinate dependence of Eqgs. (41) and (39) identical and
thus allows the grouping of terms with similar cosine functions. Then applying the boundary condition
given by Eq. (40) yields the following set of linear relationship between the arbitrary functions.

3 o0
1
2(cnn +ei2 = 2x)Ao + (cr2 — Cll)a—zBm + Zti,{[—cn(Oflmy(()1> +360) + momyy + 1205 B
—1 m=1

1

+ [—en (a4 3 + 1102 + 1538 1By }Ho(ta) = 0 (44a)
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oo
2 1 2 1 2
Z lm{ [—011 (“1»:)/5, ) ‘H’S, )) + Xl“lmJ’£, )+ Xzyf, )}Bzm
m=1

3
+ [_Cll (OCZWLyE;l) +y513>) + Xlazmystl) + X3y513>:|B3m }Ho(tma) + FOnG3n + Z FinLin = 0 (44b)
i=1

Next, it is straightforward to apply the boundary condition a,, = 0 at r = 1. Noting that H,(z,) = 0, ¢\l at
r =1 can be obtained simply by replacing ‘@’ in Eq. (41) by ‘1’. Then using Eqs. (42), (43) and (39), the fol-
lowing linear relationships between the arbitrary coefficients are obtained.

3

- HERPS
Z 2(cn 412 — 2y;)Aoi + (c12 — i1 )Bor + Z f,z,,{ {—011 (“hnyé M ) + lexlmyf)]) + Xzy(()z)] Bay
m=1

i=1
+ e (sanh” +56") + o) + x3y$>}33m}Ho<rm> =0 (450)

o0

> e [—en () +37) + noany? + 157 Ban

m=1

3
+ [_cll (O(Zrny,gl) +y513>) + X]O‘Zmysll) + X3y5,3>]B3m }Ho(tm) + FOnG3n + Z FirtLin =0 (45b)
i=1

The boundary condition D, =0 at r = a, 1 can be expressed as,

(oM +D? +D®) _=0; (DY +DP +D) =0 (46)

r= r=

Noting that DV (a,z) = 0, DIV(1,z) = 0 and D¥) = 0, Eq. (46) reduces to,
DP(a,z) =0; DP¥(1,2)=0 (47)

Substitution of Eq. (47) in Eq. (36) yields the following set of linear relations between the arbitrary
functions

(Vz(a)fo —73(a) 72(a)éi + Ki(a)

o1@) — oo + (@) ) G + Z ( o1@) ~ Gms(a) = @) ) = O

71(a) y1(a)
(48a)
3
(B2 (1) = 1)+ (1)) G+ Y (B (1) = 1) = 1) 2 =0
(48b)
Next, consider the boundary condition ¢.. = —p(r) at z = +h which can be expressed as,
(o + 02 +a) _,, = —p(r) (49)

In order to apply Eq. (49), it is necessary to transform each term of Eq. (49) to identical functional vari-
ations of the radial coordinate. To achieve this, first expand p(r) into a Fourier—Bessel series of the follow-
ing form.

p(r) =Py + zx:PmHo(tmr) (50)

m=1
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where
2f;p(r)rdr. f p(r)rHo(t,r)dr
l-a 7= " fa rHy (t,r)dr

Then express the Bessel and the modified Bessel functions of the second kind, ie. Iy(s,r;) and
Ko(s,r)(i=1,2,3), in Eq. (32) in terms of Fourier—Bessel series as,

Py = (51)

Io(surs) = 19+ D 1D H(tur); - Ko(sar) =0 + Y 0UHy(tur) (i =1,2,3) (52)
m=1 m=1
where
lg) __ —11(\/71\5'”) + all (\//l_isna) 2 : l(l) f 10 Sali I"H()( ml )d (53&)
iSn 1 —a? " fa rH{ (t,r) dr
50 —K\(Vasy) +aKi(Vsa) 2 _ fal Ko(s,ri)rHo(t,r)dr (53b)
0 /7S 1—a* " fal rHi (t,r)dr

Substitution of Egs. (A.4), (30), (32), (50) and (52) in Eq. (49) yields the following linear relationships be-
tween the arbitrary coeflicients.

3 3 0
4 oo+ > 0k S 51 Gy + 3 Ly,) cos(nm) = Py (54a)
i=1 i=1 n=1

t,zn{[vloclm cosh(t,h1) + vy cosh(z,h2)|Bay + [102, cosh(z,hy) + v cosh(z,,h3)]Bsn

_ Zsi [(l)lillg) M — 1)2/12[ 60 + 1)3/L3Z )GSH
n=1

71(a)
3
+Z <vlill,(nl)y2(a)fi(—i_)m() pzm 5 + v)” > ,,,] cos(nn) = —P, (54b)
i=1 i\a
Finally, the remaining boundary condition D. =0 at z = £/ can be expressed as,
1
(DY +DP+ DY), =0 (55)

Substitution of Egs. (A.5), (33), (34) and (52) in Eq. (55) yields the following linear relationships between
the arbitrary coefficients.

3 3 0
43 A+ Y kY s2(1 G + 8y Ly,) cos(nm) = 0 (56a)
i=1 i=1 n=1

tfn{[rloclm cosh(t,h1) + 12 cosh(z,h2)|Bay + [T100, cosh(z,h1) + 13 cosh(z,,h3)|Banm
_ Si [(Tlillg) yZ(a)éO )"/3(61) 50 4 'C3/L3l )G3n

N1 (a

n=1
3
+Z<rlill£,} 5(7:)"() 07l DE + 1,70, > 1 cos () = 0 (56b)
—1 1

I
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The Egs. (44b), (45b), (48a), (48b), (54b) and (56b) constitute a system of linear algebraic equations of order
(2M + 4N) with arbitrary constants B,,,,, B3, G3,,, L1, Lo, and L, . This system can be solved numerically.
In addition, Egs. (44a), (45a), (54a) and (56a) can be solved for the remaining four arbitrary constants
Aoli = 1,2,3) and By;. This completes the solution of all arbitrary coefficients appearing in the general solu-
tion for the vertical loading case shown in Fig. 1.

3.1. Electric charge loading case
Now consider the case of a cylinder where electric charge loading of uniform intensity is applied to the

top and bottom surfaces over an annular ring of inner and outer radii equal to a and b, respectively. The
boundary conditions can be expressed as follows,

o,(a,z) =0, 0.(a,z)=0, D, (a,z)=0 for —h<z<h (57a)
0,(1,2)=0, o0.(l,z)=0, D.(l,z)=0 for —h<z<h (57b)
o.(r,£h) =0, o,(r,th)=0, D.(r,2h)=—q(r) fora<r<l1 (57¢)

where ¢(r) denotes the nondimensional magnitude of electric charge applied to the top and bottom surfaces
of the cylinder.

The solution of this problem is quite similar to that of a cylinder subjected to vertical pressure on top and
bottom surfaces. The only difference is for z = =+ /, the vertical stress o.. is equal to zero for a < r < 1 while
the vertical electric displacement is equal to —¢(r) for a < r < 1. Therefore, the Eqgs. (54a) and (54b) are
changed to,

3 3 9]

43 vdo+ Y 0n > s (15;’ Gin + 5(()i)L,-,,> cos(nm) = 0 (58a)
i=1 i=1 n=1

22 { V104, cosh(t,,h1) + vy cosh(t,/2)]Ba, + [010, cosh(t,hy) + v cosh(t,h3)]Bs, }

DY (01/11 0 12(@)% — 15(a) _ 02l D& + 03131,(,,3)) Gy,
— 71(a)

+ i ( fl(—;"() 0 n @, + U,-A,-af,g))L,-,,] cos(nr) = 0 (58b)
Expand ¢(r) into a Fourier—Bessel series of the following form,
q(r) = Oy + Z? O, Ho(tnr) (59)
where
O = 2f1q_a2r dr’ m f Z r:f:m:;:i)rdr (60)

Therefore, the Egs. (56a) and (56b) are changed to,

3 3 9]
4 tdo+ Y 1> (1 Gy + 6 Liy) cos(nm) = 0, (61a)
i=1 i=1 n=1
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ti{[flalm COSh(tmhl) —+ 15 COSh(l‘mhz)]Bzm —+ [Tlofzm COSh(tmhl) + 13 COSh(tmh3)]B3m}

Dy (tl)tllfn‘) 72(@)C =130 _ 5 g mgl(j)) Gu,
n=1 yl(a)

3
+3° <wh /0 M — 12+ r,-z,»(sf,?)Lm] cos (nm) = —Q, (61b)

i=1 " 71 (a

Eqgs. (44b), (45b), (48a), (48b), (58b) and (61b) constitute a system of linear algebraic equations of order
(2M + 4N) with the arbitrary constants B,,,, B3, G3,, L1, Lo, and Ls,. These equations can be solved
numerically. In addition, Egs. (44a), (45a), (58a) and (61a) can be solved for the remaining four arbitrary
constants Ao, (i = 1,2,3) and By;. This completes the solution of all arbitrary coefficients appearing in the
general solution for the electric charge loading case.

4. Numerical results and discussion
4.1. Comparison with elastic cylinders

Numerical stability of the present solution is first investigated by studying the convergence with respect
to the total number of terms used in the series expansion (N, M). The overall solution scheme is found to be
stable and convergent for a wide range of M and N values. The details of the convergence study are not
presented here for brevity and the values of M and N corresponding to each set of numerical results pre-
sented in this paper are given separately. Okumura (1989) analyzed the case of a transversely isotropic elas-
tic hollow cylinder subjected to an outer band of load by using analytical techniques. The geometry of the
hollow cylinder is such that b/a =4, b/h = 1 and d/h = 0.3 where ‘i’ denotes the half-width of the band
load. A magnesium cylinder [c1; = 5.64,c1» = 2.30,¢15 = 1.81, ¢33 = 5.86, c4q = 1.68( x 10'°Nm—2)] was
used in the numerical study. The boundary conditions used by Okumura (1989) are:

6,=0 0.=0, atr=a (62a)
_ <d

B e N T (62b)
0 |z |>d

0.=0, 0,=0, atz==h (62¢)

The present general solution can be used to analyze the boundary-value problem considered by Okumura
(1989) by setting the piezoelectric coefficients to negligibly small values (e; ~ 0). Numerical solutions for
elastic hollow cylinders are found to converge for M = 11 and N = 11 for the loading conditions considered
by Okumura (1989). Fig. 2 shows a comparison of the current results with those obtained by Okumura. The
two solutions agree very closely. Note that vertical stress at z* = z/h = 1.0 has to be equal to zero because
of the boundary condition but both solutions (present and Okamura’s) are not exactly equal to zero at these
locations due to minor precision errors associated with the series solution.

4.2. Response of piezoelectric annular cylinder

4.2.1. Vertical pressure loading
Consider an annular cylinder subjected to a uniform vertical pressure ring load of intensity po over the
top and bottom surfaces (Fig. 1). The boundary conditions are expressed as,
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In the numerical study, bo/b is set to 0.85 and different ratios of 4/b (i.e. 0.5, 1.0, 2.0) and a/b (i.e. 0.3, 0.4, 0.5)
are considered. The material of the cylinder is PZT-5H [¢11 = 12.6,¢1o = 7.95,¢13 =8.41, ¢33 = 11.7,¢c44 = 2.3
(x10'°Nm2);e;5=17.0,e31 = —6.55, ¢35 = 23.3(Cm 2); &1 = 15.38, 633 = 12.76 (x 10 "°Fm ™ !)]. The roots
i (i=1,2,3) of Eq. (10) for PZT-5H are 4; = 0.82965, 1, = 0.65573 + 0.70611; and 1; = 0.65573—0.70611i.
Fig. 3 shows the nondimensional vertical stress, o, = ¢../p,, of a cylinder (4/b = 1) along the vertical direc-
tion (z* = z/b) at r* = 0.7 (r* = r/b) and along the radial direction at z =0 and z/h = 0.5 for different a/b
ratios. Vertical stress remains compressive along the length and its magnitude decreases rapidly near the
loaded end. The magnitude of compressive vertical stress in the middle part of the cylinder decreases slowly
with decreasing thickness (increasing a/b ratio) and is nearly constant in the middle of the cylinder for thick
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Fig. 3. Vertical stress profiles of a PZT-5H annular cylinder under vertical loading (bo/b=0.85,h/b=1.0,M =N = 15).
(a) Nondimensional vertical stress along the z-axis at r = 0.7b and (b) nondimensional vertical stress along the r-axis at z =0 and

z/b=0.5.
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cylinders (a/b < 0.3). Fig. 3(a) also shows the results for a cylinder with no piezoelectric coupling for the case
a/b = 0.5 and vertical stress of a piezoelectric cylinder is nearly identical (slightly smaller) to that of a non-
piezoelectric cylinder.

Fig. 3(b) shows the variation of vertical stress across the thickness of the cylinder at z/b =0 and 0.5.
Vertical stress decreases rapidly across the thickness at z/b=0.5 when compared to the mid-plane
(z=0). The variation of vertical stress across the thickness is more gradual at the mid-plane and stress
at the inner surface is generally higher than that at the outer surface. This is probably a consequence of
the loading configuration. The vertical stress profiles corresponding to different wall thicknesses are nearly
parallel to each other at the mid-plane and a slight decrease in magnitude is noted with decreasing wall
thickness. If the stress state in the mid-plane is equal to the one-dimensional state corresponding to a long
cylinder then the stress profiles in Fig. 3(b) would be parallel to the r-axis and the magnitude equal to 0.69,
0.67 and 0.63 for a/b = 0.3, 0.4 and 0.5 respectively. The stress state of the cylinder is therefore three-dimen-
sional. The magnitude of vertical stress at the outer surface slightly decreases with decreasing wall
thickness.

Fig. 4(a) shows the nondimensional vertical electric displacement, D} = D.cas/es1p,, at r* = 0.7 due to
the vertical loading applied to the ends. D] is zero at the top end (boundary condition) and initially in-
creases rapidly with depth reaching its maximum value near z/b = 0.9 for the different cylinder wall thick-
nesses considered in the present study. The peak value of D increases as the thickness of the cylinder
decreases. At the mid-plane of the cylinder D} is relatively small when compared to its maximum value
and the magnitude increases with decreasing cylinder thickness. Fig. 4(b) shows the variation of nondimen-
sional vertical electric field, E = E.e3 /p,, at r* = 0.7. E. is negative along the length and decreases with
decreasing cylinder thickness. Negative vertical electric field has its minimum magnitude at the cylinder
ends, increases rapidly with depth near the ends and thereafter becomes nearly constant with depth. It is
noted that the electric field in the middle of the cylinder is about 8% higher than the one-dimensional value
obtained from the field equations. Note that 1-D solution for vertical electric field can be obtained by
inverting Eq. (1) numerically for PZT-5H and then using the 1-D stress field (only nonzero vertical stress)
to obtain the corresponding vertical electric field. It is found that 1-D solution for E? is equal to —0.0812.
The results in Fig. 4 show the direct piezoelectric effect and represent the typical quasi-static electric re-
sponse of a short annular cylinder when used as a sensor.

0.3 -0.05

a/b=0.3

0.06F e alb=0.4
alb=0.5

D*

00 02 04 08 08 10 . . .
(a) z* (b) z*

Fig. 4. Vertical electric displacement and vertical electric field of a PZT-5H cylinder under vertical loading (bo/b = 0.85,
h/b=1.0, M = N = 15). (a) Nondimensional vertical electric displacement along the z-axis at r = 0.7b. (b) Nondimensional vertical
electric field along the z-axis at r = 0.7h.
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4.3. Electric charge loading

Consider an annular cylinder subjected to uniform electric charge density ¢o on the top and bottom sur-
faces. The boundary conditions can be expressed by Eqs. (63a), (63b) and

p—{m a<rsh

= , 0.=0, 0,=0, atz=zh (64)
0 boéréb

Fig. 5(a) and (b) shows the variation of nondimensional vertical electric displacement, D] = D./q,, along
the vertical and radial directions respectively. Nondimensional vertical electric displacement has a unit
magnitude at (boundary condition) and decreases rapidly near the top end. It is nearly constant within
the middle half of the cylinder and the magnitude increases slightly with increasing thickness of the cylinder.
Fig. 5(b) shows that D} is constant and approaches the 1-D solution in the mid-plane of the cylinder for the
three wall thicknesses considered in the present study, i.e. D} = 0.70, 0.67 and 0.63 for a/b = 0.3, 0.4 and 0.5
respectively. However, at z/b = 0.5, the radial variation of D across the cylinder wall is nonuniform with a
higher magnitude at the inner surface. It is noted that the variation of D} in the z- and r-directions is quite
similar to that observed for vertical stress under applied vertical pressure.

Fig. 6 shows the nondimensional vertical displacement, u’ = u.e3; /bD,, along the z-axis at r = 0.7 for
different a/b ratios. Vertical displacement increases linearly along the z-axis (similar to an elastic cylinder
under tension) and reaches its maximum value at the ends of the cylinder. « is only slightly increased with
increasing cylinder thickness and this implies that the wall thickness of an annular actuator has a minor
influence on the stroke. Fig. 6 shows the converse piezoelectric effect of the cylinder associated with electric
loading. In more practical situations, the actuator has a mechanical bias load and is driven by a voltage
applied to circular electrodes placed at the cylinder ends. This case involves complex mixed-boundary con-
ditions that require a new formulation of the problem. However, the general solutions given by Eq. (19) can
be used to formulate this mixed boundary-value problem.

Fig. 7(a) shows the variation of nondimensional vertical stress, 67, = 6.,€31/casq,, in the z-direction at
r* = 0.7 for three different values of a/b. Vertical stress is zero at the loading surface due to the boundary
condition and is generally compressive inside the cylinder. It increases rapidly near the ends reaching a max-
imum value in the vicinity of z* = z/b = 0.8. Thereafter, vertical stress decreases rapidly with depth. The
magnitude of vertical stress increases with decreasing thickness of the annular cylinder. Fig. 7(b) shows
the variation of nondimensional vertical electric field, £} = Eze§1 /caaq,, in the z-direction at r* = 0.7 and
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a/b=0.5 (z=0)
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-0.80F <o alb=0.4 (2/h=0.5)
alb=0.5 (z/h=0.5)
.0.85 ! ! ! ! ! !
03 04 05 06 07 08 09 10
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Fig. 5. Vertical electric displacement of a PZT-5H annular cylinder under electric charge loading (bo/b = 0.85,h/b = 1.0, M = N = 15).
(a) Nondimensional vertical electric displacement along the z-axis at r = 0.7h and (b) nondimensional vertical electric displacement
along the r-axis at z=0 and z/h =0.5.
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Fig. 6. Nondimensional vertical displacement along the z-axis at r = 0.7b of a PZT-5H annular cylinder under electric charge loading
(bo/b = 0.85,h/b=1.0,M = N = 15).
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Fig. 7. Vertical stress and electric field of a PZT-5H annular cylinder under electric charge loading (bo/b=0.85,
h/b=1.0, M = N = 15). (a) Nondimensional vertical stress along the z-axis at r = 0.7b and (b) nondimensional vertical electric field
along the z-axis at r = 0.7b.
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Fig. 8. Vertical stress and displacement along the z-axis at r =0.7h of a PZT-5H annular cylinder under electric charge loading
(bo/b =0.85,a/b =0.5). (a) Nondimensional vertical stress profiles along the z-axis at »r =0.7b and (b) nondimensional vertical
displacement profiles along the z-axis at r = 0.7b.
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Fig. 9. Vertical electric displacement and vertical electric field of a PZT-5H annular cylinder under electric charge loading
(bo/b = 0.85,a/b = 0.5). (a) Nondimensional vertical electric displacement profiles along the z-axis at r = 0.7b and (b) nondimensional
vertical electric field profiles along the z-axis at r = 0.7b.

the behaviour is very similar to that of D;. The distribution of vertical stress and vertical electric field at the
mid-plane of the cylinder was also considered. It is found that 67, and E? are nearly constant at the mid-
plane if 4/b > 1 and are nonuniform for shorter cylinders (4/b < 1) with peak values usually occurring near
or at the inside surface of the cylinder.

Figs. 8 and 9 show the variation of nondimensional vertical stress, vertical displacement, vertical electric
displacement and vertical electric field at r* = 0.7 for different cylinder lengths (4/b ratios). The solution
converges for M =15 and N = 15 when A/b < 1, and for M = 30 and N = 30 when h/b = 2. Vertical stress
is zero at the top surface due to the boundary condition. It is compressive and increases rapidly with depth
near the top surface and reduces to a negligible value in the middle of the cylinder for /b > 1. Fig. 8(b)
implies that the average strain in the cylinder is nearly equal for the three different heights so the maximum
value of nondimensional vertical displacement is directly proportional to the length-radius ratio of the cyl-
inder. Fig. 9 indicates that both of D}, and E’ decay rapidly with depth from the loaded end and approach
the 1-D solution for a long cylinder in the middle part of the cylinder when 4/b > 2.

5. Conclusions

A generalized displacement potential function method together with a Fourier—Bessel series expansion is
successfully used to obtain the exact analytical general solution for fully coupled electroelastic field of an
annular piezoelectric cylinder of finite length subjected to axi-symmetric loading. The series solution shows
good numerical stability and convergence. Numerical solutions for stresses obtained from the present study
agree very closely with the existing solutions for the limiting case of an elastic cylinder. In the case of long
cylinders (4/b > 2) subjected to vertical end loads or end electric charge, vertical stress, vertical electric dis-
placement and vertical electric field are uniform in the middle part of the cylinder and are very close to the
one-dimensional solution. Both vertical electric displacement and electric field have their maximum values
near the loading surface under applied vertical pressure. Similarly, vertical stress is compressive and max-
imum near the cylinder ends under electric charge loading applied to the ends. Electroelastic field of a short
cylinder (4/b < 1) is three-dimensional and shows complex dependence on geometry and material proper-
ties. The general solution derived in this paper can be used to analyze a variety of problems such as the
effective properties of a unit cell of a 1-3 piezocomposite, fracture mechanics of cylindrical actuators
and piezocomposites and other mixed boundary-value problems involving annular actuators and
resonators.
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Appendix A
The constants Qi = 1,2,3,4) appearing in Eq. (10) are defined by,

Q= 6%5011 + &nen

Q= 5110%3 + 26%5013 + 28j1c13 + 2eisci3 — 1 — 2essescin — €3¢ — Eniesscnn

Q3 = *5330%3 — 2ejsezzci — 2eszzciz — 2e33c13 — 2e33 + €§3011 + 2eisc33 + 6%5033 + &33¢33¢11 + €11633 + €33
Q4 = —633 — €33C33

(A1)
The solution for ¥ has the following form depending on the nature of the roots /(i = 1,2,3).
+ Y, + s for 41 # 4 # 43

+ EZ + Z$3 for j.] 7& /12 = )v3 (AZ)
V= 2, + 2%, for iy =y =

V=1,
V=1,

The solutions for stresses and electric displacements corresponding to Eq. (19) can be expressed as,

1
ol (r) = (c1a — 011) 5Bo1 + ZZ (e + ez — 2%;)Ao; (A.3)
i=1
3
¥ = —42 vido; 0y =0 (A4)
-
3
DY = -4 "tdy; DY =0 (A5)

T
3
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3 00
1> (r,z) ZQ,ZI [AinJ 1 (ta7) + Bin Y1 (8,,7)] sinh(z,,2;)

m=1

’;
DV (r,z) ="t > oA o(tur) + BinYo(tr)] cosh(t,z:)

i=1 1

= i i \/an{ {(Cll - X,-)\/Ifsnlo(sm) + (c1n — c“)%ll (s,,r,-)} Gin

i=1 n=l

o0
m=

1
+ {(011 + Xi)\/ZS,,Ko(S,,I”[) — (c12 —en) ;Kl (S,,}’,-):| L[,,} cos(s,2)

3 00

c?(r,z) = — Z v; Z 252Gl o(5275) + LinKo(5,7;)] €OS(5,2)
3 00

0P (r,z2) = = 0: Y disi[Guul (5,77) — LK1 (s,77)] sin(s,z)
3 00

DA (r,2) ==& > dist (G 1 (suri) — LinK 1 (s077)] sin(s,2)

i=1 n=1

3 00
Z T; Z j~1 GWIO(Sn 1) + LinKO(Snri)] COS(SHZ)

3
I
—_

where
% = (cisky +ky) /i v = (exsky + esska) /2 —ci3; 0= (1 + ki + elskzi)/\//l_i
¢ = (e1s + sk — gllkZi)/\/j-_ﬁ 7 = (exsky; — &3kx) /i — 1 (i=1,2,3)

And I',,(i=0,1,2,3) appearing in Eq. (39) are defined as
1 1
Fon—w—hfsn{cll—71 \/_Sn]o (Sar1) 012—011);11(&,1’1)}

/1

P

> - 1
+ \//T3Sn {(Cn - X3)\/733n[0(sn7’3) + (e12 — 011);11 (8;17’3)}

- 50\/@” [(Cn — 1)V Aa8ulo(s,12) + (€12 — c11)

& =1 1
I, :V(V/av Sn|: e — 1)V Mso(sarr) + (en2 _Cll)rll(snrl):l
1 (

- é,—\/ﬂsn [(011 — Xz)\/)v'ZSnfo(Snrz)(Clz —cn) ;II(SnFZ):|

1
V7w en 0V EsKalsn) = (e = en) pKGsan) | (=1.2.3
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