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Abstract

This paper presents a theoretical study of a piezoelectric annular cylinder under axisymmteric electromechanical
loading. The piezoelectric material is assumed to be transversely isotropic and the general solutions of the governing
equations are obtained in terms of a Fourier–Bessel series containing Bessel functions of the first and second kind.
The boundary-value problems for vertical pressure and an electric charge loading applied to the ends of an annular
cylinder are solved by expanding the applied loading in terms of a Fourier–Bessel series. Selected numerical results
for the electroelastic field of an annular cylinder are presented for different aspect ratios of a cylinder and material
properties.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric elements are commonly used as sensors and actuators in adaptive structures (Matsuzaki,
1997). Piezoelectric materials generate an electric charge in response to mechanical deformations. Con-
versely, these materials produce mechanical strains under an applied electric field. Piezoelectric materials
are available in a wide variety of shapes and sizes and can be distributed along a structure without greatly
increasing its mass. Brittle behaviour and electric fatigue are two major concerns that limit industrial appli-
cations of piezoelectric materials. Among the many types of piezoelectric elements, the cylindrical (solid
and hollow) shape is used in a broad range of practical applications such as resonators, actuators, fuel
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injectors, atomic force microscopes, high-precision telescopes, etc. The study of electroelastic field of a pie-
zoelectric cylinder under combined electromechanical loading is therefore one of the fundamental problems
of adaptive structures technology. Electric field and stress concentration in a cylindrical element could lead
to dielectric breakdown, electrode delamination and fracture. Furthermore, tensile stresses due to applied
loading could lead to tensile fracture as the tensile strength of these materials is relatively low.

Stress analysis of elastic solid and annular cylinders of infinite length is one of the fundamental problems
in elasticity and has a rich history (Levin and Klosner, 1967; Atsumi and Itou, 1974; Kasano et al., 1982).
The three-dimensional problem of a finite cylinder is much more complicated than that of an infinite cyl-
inder. An isotropic finite cylinder under axial compression was analyzed by Pickett (1944) by using a multi-
ple Fourier–Bessel series solution. A similar analysis for a constrained cylinder under end compression was
done by Moghe and Neff (1971). Power and Childs (1971) presented a solution for an isotropic circular bar
of finite length subjected to axi-symmetric tractions and/or displacements on either or both ends. The anal-
ysis of a transversely isotropic finite cylinder with a stress-free lateral surface was considered by Vendhan
and Archer (1977) by using a displacement potential. Okumura (1987, 1989) used the generalized Elliott�s
solution (Elliott, 1948) to analyze a transversely isotropic, short hollow cylinder subjected to an outer band
load. The analytic solutions for a finite transversely isotropic solid cylinder under different surface loads
were presented by Wei et al. (1999); Chau and Wei (2000) and Wei and Chau (2002). These authors used
the Lekhnitskii�s stress functions (Lekhnitskii, 1963) to uncouple the equations of equilibrium. A new
Fourier–Bessel series expansion of the stress function was proposed so that all boundary conditions can
be exactly satisfied. It is noted here that study of free vibration of elastic cylinders was done long before
the above studies dealing with cylinders under external static loading. Pochhammer in 1876 and Chree
in 1889 determined the natural frequencies and mode shapes of an infinite ideal elastic cylinder (Love,
1944). Numerous other studies have followed the classical work of Pochhammer and Chree (Miklowitz,
1984). Hutchinson (1972, 1980) derived theoretical solutions for free vibrations of a finite elastic cylinder
and presented a concise review of past studies related to free vibrations of infinite and finite cylinders.

Past studies on elastic cylinders provide a strong foundation for advancement of theoretical analysis of
piezoelectric cylinders. Parton and Kudryavtsev (1988) present the general theory and solutions for a vari-
ety of problems of linear piezoelectricity. The classical solution of Pochhammer for flexural free vibrations
of an infinite elastic cylinder was extended to the piezoelectric case by Paul (1966). The frequency equation
becomes more complex for the piezoelectric case although the radial and vertical variations of the mode
shapes are similar to the ideal elastic solution. Parton and Kudryavtsev (1988) presented the basic theory
of wave propagation and considered a wide range of free vibration problems related to plates, cylinders and
layered systems. They also presented an axisymmetric general solution for piezoelectricity by using Hankel
integral transforms. Paul and Natarajan (1994a,b) considered the free vibration of a finite piezoelectric cyl-
inder by extending the concepts proposed by Hutchinson (1972, 1980).

The study of infinite piezoelectric cylinders under external loading has received some attention in the
past. Rajapakse (1996) and Rajapakse and Zhou (1997) used Fourier integral transforms to derive an ana-
lytic solution for an infinite piezoelectric cylinder and an infinite composite cylinder subjected to axisym-
metric electromechanical loading. They examined the effects of coupling between mechanical and electric
fields in a long cylinder and a composite cylinder and their solution can be easily extended to study the
interaction between a piezoelectric fibre and a surrounding elastic medium.

A theoretical study of electromechanical response of a piezoelectric finite annular cylinder under exter-
nally applied mechanical and electric loading has not appeared in the literature. Therefore, the main objec-
tive of this study is to develop the analytical general solutions for a finite annular cylinder and examine the
response of cylinders under some fundamental loading such as vertical pressure and electric charge loading
applied to the ends of a cylinder. A set of potential functions are used to transform the governing equations
expressed in terms of displacements and electric potential to a set of Laplace equations. The general solu-
tions for Laplace equations are obtained in terms of a Fourier–Bessel series containing Bessel functions of
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the first and second kind. Analytical general solution for the complete electroelastic field is presented and
these solutions can be used to solve a wide range of boundary-value problems involving finite piezoelectric
cylinders. The applied electromechanical loading of a cylinder is expressed in terms of a Fourier–Bessel ser-
ies to determine the solutions for arbitrary functions appearing in the general solutions. Selected numerical
results for different cylinder dimensions are presented for uniform vertical pressure and electric charge load-
ing applied to the cylinder ends.
2. Analytical general solution

Fig. 1 shows a piezoelectric annular cylinder of inner radius a, outer radius b and height 2h under axi-
symmetric electromechanical loading applied to the boundary. A cylindrical polar coordinate system (r,h,z)
is used with the z-axis along the axis of symmetry of the cylinder. The cylinder is made out of a transversely
isotropic piezoelectric material or a poled ceramic with the poling direction parallel to the z-axis.

The constitutive equations for piezoelectric materials which are transversely isotropic or poled along the
z-axis can be expressed as (Parton and Kudryavtsev, 1988),
rrr ¼ c11err þ c12ehh þ c13ezz � e31Ez ð1aÞ

rhh ¼ c12err þ c11ehh þ c13ezz � e31Ez ð1bÞ

rzz ¼ c13err þ c13ehh þ c33ezz � e33Ez ð1cÞ

rrz ¼ 2c44erz � e15Er ð1dÞ

Dr ¼ 2e15erz þ e11Er; Dz ¼ e31err þ e31ehh þ e33ezz þ e33Ez ð1eÞ

where rij, eij, Di and Ei denote the components of stress tensor, strain tensor, electric displacement vector
and electric field vector respectively; c11, c12, c13, c33 and c44 are elastic constants under zero or constant
electric field; e31, e33 and e15 are piezoelectric constants; and e11 and e33 are dielectric constants under zero
or constant strain.

The field equations for the axisymmetric case are
orrr

or
þ orrz

oz
þ rrr � rhh

r
¼ 0;

orrz

or
þ orzz

oz
þ rrz

r
¼ 0 ð2aÞ
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Fig. 1. Annular piezoelectric cylinder under vertical loading and the coordinate system.
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oDr

or
þ oDz

oz
þ Dr

r
¼ 0 ð2bÞ
Eq. (2a) represents the classical equilibrium equation in the absence of body forces and Eq. (2b) is the
Gauss� equation representing the balance of electric flux in a charge-free medium. The strain–displacement
relations are
err ¼
our

or
; ehh ¼

ur

r
; ezz ¼

ouz

oz
; ezr ¼

1

2

our

oz
þ ouz

or

� �
ð3Þ
where ur and uz denote the displacements in the r- and z-directions respectively.
The relationship between the electric field Ei (i = r,z) and the electric potential / can be expressed as
Er ¼ � o/
or

; Ez ¼ � o/
oz

ð4Þ
To facilitate the derivation of the analytic solution, the following potential function representation is intro-
duced (Rajapakse, 1996; Rajapakse and Zhou, 1997; Ding et al., 1996).
ur ¼
ow
or

; uz ¼ k1
ow
oz

; / ¼ c44k2
e31

ow
oz

ð5Þ
where w(r,z) denotes a potential function, and k1 and k2 are unknown constants to be determined.
Combination of Eqs. (1) to (5) leads to the following set of governing equations expressed in terms of

w(r,z).
c11
o
2w
or2

þ 1

r
ow
or

� �
þ ½c44 þ k1ðc13 þ c44Þ þ k2ðe31 þ e15Þ�

o
2w
oz2

¼ 0 ð6aÞ

ðc44k1 þ c13 þ c44 þ e15k2Þ
o
2w
or2

þ 1

r
ow
or

� �
þ ½c33k1 þ e33k2�

o
2w
oz2

¼ 0 ð6bÞ

ðe15k1 þ e31 þ e15 � e11k2Þ
o
2w
or2

þ 1

r
ow
or

� �
þ ½e33k1 � e33k2�

o
2w
oz2

¼ 0 ð6cÞ
Before proceeding to solve the above governing equations, it is prudent to define a set of nondimensional
field variables. Typical values of elastic, piezoelectric and dielectric constants of piezoelectric materials are
different by many orders of magnitude and this could lead to precision and numerical instability problems
during the calculation of numerical solutions. The coordinates r and z and the displacements ur and uz are
nondimensionalized by the outer radius b which is set as the nondimensional unit length parameter. The
stresses and elastic constants are nondimensionalized by c44. The electric displacements and piezoelectric
constants are nondimensionalized by e31. For convenience, the nondimensional coordinates, displace-
ments, stresses, electric displacements, elastic constants and piezoelectric constants are denoted by the
same symbols without loss of generality. In addition, the following nondimensional quantities are
introduced.
/ ¼ e31
c44b

/; w ¼ w

b2
; e11 ¼

c44
e231

e11; e33 ¼
c44
e231

e33 ð7Þ
Using the nondimensional quantities, Eqs. 5 and (6a)–(6c) are changed to:
ur ¼
ow
or

; uz ¼ k1
ow
oz

; / ¼ k2
ow
oz

ð8aÞ
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c11
o2w
or2

þ 1

r
ow
or

� �
þ 1þ k1 1þ c13ð Þ þ k2 1þ e15ð Þ½ � o

2w
oz2

¼ 0 ð8bÞ

k1 þ c13 þ 1þ e15k2ð Þ o2w
or2

þ 1

r
ow
or

� �
þ c33k1 þ e33k2½ � o

2w
oz2

¼ 0 ð8cÞ

e15k1 þ 1þ e15 � e11k2ð Þ o2w
or2

þ 1

r
ow
or

� �
þ e33k1 � e33k2½ � o

2w
oz2

¼ 0 ð8dÞ
All nondimensional material properties appearing in the above governing equations have similar orders of
magnitude and k1 and k2 are also dimensionless constants. A nontrivial solution of Eqs. (8b)–(8d) exists if
and only if,
1þ ð1þ c13Þk1 þ ð1þ e15Þk2
c11

¼ c33k1 þ e33k2
k1 þ 1þ c13 þ e15k2

¼ k ð9aÞ

1þ ð1þ c13Þk1 þ ð1þ e15Þk2
c11

¼ e33k1 � e33k2
e15k1 þ 1þ e15 � e11k2

¼ k ð9bÞ
where k is a dimensionless constant to be determined.
Eqs. (9a) and (9b) have three unknowns k1,k2 and k. Eliminating k1 and k2 in Eqs. (9a) and (9b), the

following cubic equation of k is obtained.
X1k
3 þ X2k

2 þ X3k þ X4 ¼ 0 ð10Þ
where the coefficients Xi (i = 1,2,3,4) are constants expressed in terms of material properties and are de-
fined in the Appendix (Eq. (A.1)).

The three roots of Eq. (10) are denoted by ki (i = 1,2,3) with k1 assumed to be a positive real number
and k2 and k3 are either positive real numbers or a pair of complex conjugates with positive real parts. For
each root of Eq. (10), the Eqs. (9a) and (9b) yield the solutions for k1 and k2. It is convenient to denote the
corresponding solutions by kij (i = 1,2; j = 1,2,3) where the subscript j identifies the corresponding root ki.

In view of the three roots ki obtained from Eq. (10), the Eqs. (8b)–(8d) yield the solutions for the three
potential functions wi ði ¼ 1; 2; 3Þ governed by,
o2wi

or2
þ 1

r
owi

or
þ ki

o2wi

oz2
¼ 0 ði ¼ 1; 2; 3Þ ð11Þ
Assuming that roots ki are unequal, the solutions for potential function w(r,z), elastic displacements and
electric potential can be rewritten in terms of wi by using Eqs. (8a) and (11) as
w ¼ w1 þ w2 þ w3 ð12aÞ

ur ¼
o

or
w1 þ w2 þ w3

� �
; uz ¼ k11

ow1

oz
þ k12

ow2

oz
þ k13

ow3

oz
ð12bÞ

/ ¼ k21
ow1

oz
þ k22

ow2

oz
þ k23

ow3

oz
ð12cÞ
The solution for the potential function w for the general case that includes equal roots is given in Appendix
(Eq. (A.2)) and the Eq. (12) can be accordingly modified.
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Eq. (11) can be expressed in the following form.
o2wi

or2
þ 1

r
owi

or
þ o2wi

oz2i
¼ 0 ði ¼ 1; 2; 3Þ ð13Þ
where zi ¼ z=
ffiffiffiffi
ki

p
.

The solution of Eq. (13) is given by (Bland, 1961),
wi ¼ ½AJ 0ðtrÞ þ BY 0ðtrÞ�½Ci coshðtziÞ þ F i sinhðtziÞ� ði ¼ 1; 2; 3Þ ð14Þ

where J0(tr) and Y0(tr) are Bessel functions of the first and the second kind of zero order, respectively
(Bland, 1961); cosh(tzi) and sinh(tzi) are hyperbolic cosine and sine functions, respectively; and t,A,B,Ci

and Fi (i = 1,2,3) are arbitrary functions to be determined.
On the other hand, Eq. (11) can also be expressed in the following form.
o
2wi

or2i
þ 1

ri

owi

ori
þ o

2wi

oz2
¼ 0 ði ¼ 1; 2; 3Þ ð15Þ
where ri ¼
ffiffiffiffi
ki

p
r.

The solution of Eq. (15) is given by (Bland, 1961),
wi ¼ ½GiI0ðsriÞ þ LiK0ðsriÞ�½P cosðszÞ þ R sinðszÞ� ði ¼ 1; 2; 3Þ ð16Þ

where I0(sri) and K0(sri) are the modified Bessel functions of the first and second kind of zero order, respec-
tively (Bland, 1961); and s,Gi,Li, P and R(i = 1,2,3) are arbitrary functions to be determined. Therefore,
the general solution of Eq. (11) can be expressed as,
wi ¼ ½AJ 0ðtrÞ þ BY 0ðtrÞ�½Ci coshðtziÞ þ F i sinhðtziÞ�
þ ½GiI0ðsriÞ þ LiK0ðsriÞ�½P cosðszÞ þ R sinðszÞ� ði ¼ 1; 2; 3Þ ð17Þ
For the axisymmetric case, the potential function should contain only even functions of z. In addition to the
solution given by Eq. (17), it is necessary to include the potential functions for the radially symmetric plane
problem of an annular cylinder and that of a long bar for the completeness of the general solution. There-
fore, the complete general solution of the potential function w in Eq. (8a) can be expressed as,
w ¼ B01 ln r þ
X3
i¼1

A0iðr2 � 2z2i Þ

þ
X3
i¼1

X1
m¼1

½AimJ 0ðtmrÞ þ BimY 0ðtmrÞ� coshðtmziÞ þ
X1
n¼1

½GinI0ðsnriÞ þ LinK0ðsnriÞ� cosðsnzÞ
( )

ð18Þ
where sn ¼ np
h and Aim,Bim,Gin,Lin, A0i (i = 1,2,3) and B01 are arbitrary functions and tm is a constant.

These unknown quantities have to be determined from the boundary conditions.
To facilitate the solution of boundary-value problems, the general solutions for displacements, stresses,

etc. are expressed as sum of three parts: (a) the first part denoted by superscript �0� corresponds to the first
two terms of the right hand side of Eq. (18); (b) the second part denoted by superscript �1� corresponds to
the series containing the Bessel functions of the first and the second kind in Eq. (18); (c) the third part de-
noted by superscript �2� corresponds to the series containing modified Bessel functions of the first and the
second kind in Eq. (18).

The corresponding general solutions of displacements and electric potential are:
uð0Þr ðrÞ ¼ 1

r
B01 þ 2

X3
i¼1

A0ir; uð0Þz ðzÞ ¼ �4
X3
i¼1

k1i
A0i

ki
z; /

ð0ÞðzÞ ¼ �4
X3
i¼1

k2i
A0i

ki
z ð19aÞ
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uð1Þr ðr; zÞ ¼ �
X3
i¼1

X1
m¼1

tm½AimJ 1ðtmrÞ þ BimY 1ðtmrÞ� coshðtmziÞ ð19bÞ

uð1Þz ðr; zÞ ¼
X3
i¼1

k1i
X1
m¼1

tmffiffiffiffi
ki

p ½AimJ 0ðtmrÞ þ BimY 0ðtmrÞ� sinhðtmziÞ ð19cÞ

/
ð1Þðr; zÞ ¼

X3
i¼1

k2i
X1
m¼1

tmffiffiffiffi
ki

p ½AimJ 0ðtmrÞ þ BimY 0ðtmrÞ� sinhðtmziÞ ð19dÞ

uð2Þr ðr; zÞ ¼
X3
i¼1

X1
n¼1

ffiffiffiffi
ki

p
sn½GinI1ðsnriÞ � LinK1ðsnriÞ� cosðsnzÞ ð19eÞ

uð2Þz ðr; zÞ ¼ �
X3
i¼1

k1i
X1
n¼1

sn½GinI0ðsnriÞ þ LinK0ðsnriÞ� sinðsnzÞ ð19fÞ

/
ð2Þðr; zÞ ¼ �

X3
i¼1

k2i
X1
n¼1

sn½GinI0ðsnriÞ þ LinK0ðsnriÞ� sinðsnzÞ ð19gÞ
The general solutions of stresses and electric displacements are given in the Appendix (Eqs. (A.3)–(A15)).
According to authors� knowledge the above general solution for a piezoelectric finite annular cylinder is a
new contribution. The general solution for a solid cylinder can be obtained by setting the terms containing
Bessel functions of the second kind and modified Bessel functions of the second kind to zero.
3. Electromechanical loading of annular cylinder

In this section an annular cylinder subjected to two basic cases of electromechanical loading is analyzed
by using the general solutions derived in the preceding section. First consider the case of a cylinder under
normal pressure applied to the top and bottom ends (Fig. 1). Assume that all surfaces of the cylinder are
electrically impermeable and the inner and outer cylindrical surfaces are stress free.

The boundary conditions can be expressed as follows:
rrrða; zÞ ¼ 0; rrzða; zÞ ¼ 0; Drða; zÞ ¼ 0 for � h 6 z 6 h ð20aÞ

rrrð1; zÞ ¼ 0; rrzð1; zÞ ¼ 0; Drð1; zÞ ¼ 0 for � h 6 z 6 h ð20bÞ

rzzðr;
hÞ ¼ �pðrÞ; rzrðr;
hÞ ¼ 0; Dzðr;
hÞ ¼ 0 for a 6 r 6 1 ð20cÞ
where p(r) denotes the nondimensional intensity of the normal pressure applied on the top and bottom sur-
faces of the cylinder.

The boundary conditions expressed by Eqs. (20a)–(20c) have to be used to determine the arbitrary func-
tions Aim,Bim,Gin and Lin(i = 1,2,3; m,n = 1,2, . . . ,1) appearing in the general solutions. Given the com-
plexity of the analytical general solutions, it is prudent to apply the boundary conditions in a systematic
way to solve for the arbitrary functions. First consider the boundary condition rzr = 0 at z = ±h. Noting
that rð0Þ

zr and rð2Þ
zr vanish at z = ±h, the boundary condition, rzr ¼ rð0Þ

zr þ rð1Þ
zr þ rð2Þ

zr ¼ 0, is reduced to
rð1Þ

zr ¼ 0. Then using Eq. (A.8) and noting that this boundary condition has to be satisfied for a 6 r 6 1,
the following relationships can be obtained.
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X3
i¼1

#i

X1
m¼1

Aim sinhðtmhiÞ ¼ 0;
X3
i¼1

#i

X1
m¼1

Bim sinhðtmhiÞ ¼ 0 ð21Þ
where hi ¼ h=
ffiffiffiffi
ki

p
.

Using Eq. (21), express A1m in terms of A2m and A3m, and B1m in terms of B2m and B3m as
A1m ¼ a1mA2m þ a2mA3m; B1m ¼ a1mB2m þ a2mB3m ð22Þ

where
a1m ¼ �#2 sinhðtmh2Þ
#1 sinhðtmh1Þ

; a2m ¼ �#3 sinhðtmh3Þ
#1 sinhðtmh1Þ

ð23Þ
Substitution of Eq. (22) into Eq. (A.8) leads to,
rð1Þ
zr ðr; zÞ ¼ �

X1
m¼1

t2m #1 sinhðtmziÞa1m þ #2 sinhðtmziÞ½ � J 1ðtmrÞA2m þ Y 1ðtmrÞB2m½ �f

þ #1 sinhðtmziÞa2m þ #3 sinhðtmziÞ½ � J 1ðtmrÞA3m þ Y 1ðtmrÞB3m½ �g ð24Þ
Noting that the shear stress boundary conditions on the inner and outer cylindrical surfaces (r = a, 1) have
to be satisfied for �h 6 z 6 h, the following conditions can be established.
rð1Þ
rz ða; zÞ ¼ 0; rð2Þ

rz ða; zÞ ¼ 0; rð1Þ
rz ð1; zÞ ¼ 0; rð2Þ

rz ð1; zÞ ¼ 0 ð25Þ

Substituting the first condition of Eq. (25) in Eq. (24) yields,
A2m ¼ � Y 1ðtmaÞ
J 1ðtmaÞ

B2m; A3m ¼ � Y 1ðtmaÞ
J 1ðtmaÞ

B3m ð26Þ
Then substituting Eq. (26) into Eq. (24) and imposing the third condition of Eq. (25) yields the following
transcendental equation to determine tm.
J 1ðtmÞY 1ðtmaÞ � J 1ðtmaÞY 1ðtmÞ ¼ 0 ð27Þ
The arbitrary functions G1n and G2n can now be expressed in terms of G3n and Lin(i = 1,2,3) by substituting
the second and fourth boundary conditions of Eq. (25) in Eq. (A.13). Therefore,
G1n ¼
½c2ðaÞn0 � c3ðaÞ�G3n þ

P3
i¼1

½c2ðaÞni þ jiðaÞ�Lin

c1ðaÞ
ð28aÞ

G2n ¼ � n0G3n þ
X3
i¼1

niLin

 !
ð28bÞ
where
ciðrÞ ¼ #ikiI1ðsnriÞ; jiðrÞ ¼ #ikiK1ðsnriÞ ði ¼ 1; 2; 3Þ ð29aÞ

n0 ¼
c1ðaÞc3ð1Þ � c1ð1Þc3ðaÞ
c1ðaÞc2ð1Þ � c1ð1Þc2ðaÞ

; ni ¼
c1ð1ÞjiðaÞ � c1ðaÞjið1Þ
c1ðaÞc2ð1Þ � c1ð1Þc2ðaÞ

ði ¼ 1; 2; 3Þ ð29bÞ
Until now only shear stress boundary condition of the cylinder has been used (rzr = 0 at r = a, 1 and
z = ±h) and the unknowns A1m,A2m,A3m,B1m,G1n and G2n are expressed in terms of the remaining arbi-
trary constants.
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Next, consider the normal stress and normal electric displacement boundary conditions given by Eq.
(20c). Substituting the Eqs. (22) and (26) in Eq. (A.7) yields,
rð1Þ
zz ðr; zÞ ¼

X1
m¼1

t2m t1 coshðtmz1Þa1m þ t2 coshðtmz2Þb cB2m þ t1 coshðtmz1Þa2m þ t3 coshðtmz3Þ½ �B3mf gH 0ðtmrÞ

ð30Þ

where
HjðtmrÞ ¼ � Y 1ðtmaÞ
J 1ðtmaÞ

J jðtmrÞ þ Y jðtmrÞ ðj ¼ 0; 1Þ ð31Þ
Substitution of Eqs. (28a) and (28b) in Eq. (A.12) yields,
rð2Þ
zz ðr; zÞ ¼ �

X1
n¼1

s2n

(
t1k1

c2ðaÞn0 � c3ðaÞ
c1ðaÞ

I0ðsnr1Þ � t2k2n0I0ðsnr2Þ þ t3k3I0ðsnr3Þ

 �

G3n

þ
X3
i¼1

t1k1
c2ðaÞni þ jiðaÞ

c1ðaÞ
I0ðsnr1Þ � t2k2niI0ðsnr2Þ þ tikiK0ðsnriÞ


 �
Lin

)
cosðsnzÞ ð32Þ
Next, following an identical procedure, Dð1Þ
z can be expressed as,
Dð1Þ
z ðr; zÞ ¼

X1
m¼1

t2m s1 coshðtmz1Þa1m þ s2 coshðtmz2Þ½ �B2m þ s1 coshðtmz1Þa2m þ s3 coshðtmz3Þ½ �B3mf gH 0ðtmrÞ

ð33Þ
and
Dð2Þ
z ðr; zÞ ¼ �

X1
n¼1

s2n

(
s1k1

c2ðaÞn0 � c3ðaÞ
c1ðaÞ

I0ðsnr1Þ � s2k2n0I0ðsnr2Þ þ s3k3I0ðsnr3Þ

 �

G3n

þ
X3
i¼1

s1k1
c2ðaÞni þ jiðaÞ

c1ðaÞ
I0ðsnr1Þ � s2k2niI0ðsnr2Þ þ sikiK0ðsnriÞ


 �
Lin

)
cosðsnzÞ ð34Þ
Substitution of Eqs. (22) and (26) in Eq. (A.9) yields the following expression for Dð1Þ
r .
Dð1Þ
r ðr; zÞ ¼

X1
m¼1

11 sinhðtmz1Þa1m þ 12 sinhðtmz2Þ½ �B2m þ 11 sinhðtmz1Þa2m þ 13 sinhðtmz3Þ½ �B3mf gH 1ðtmrÞ

ð35Þ

Substitution of Eqs. (28a) and (28b) in Eq. (A.14) yields,
Dð2Þ
r ðr; zÞ ¼ �

X1
n¼1

s2n

(
c2ðaÞn0 � c3ðaÞ

c1ðaÞ
-1ðrÞ � n0-2ðrÞ þ -3ðrÞ


 �
G3n

þ
X3
i¼1

c2ðaÞni þ jiðaÞ
c1ðaÞ

-1ðrÞ � ni-2ðrÞ � qiðrÞ

 �

Lin

)
sinðsnzÞ ð36Þ
where
-iðrÞ ¼ 1ikiI1ðsnriÞ; qiðrÞ ¼ 1ikiK1ðsnriÞ ði ¼ 1; 2; 3Þ ð37Þ
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Following an identical procedure, rð1Þ
rr can be expressed as,
rð1Þ
rr ðr; zÞ ¼

X1
m¼1

tm ½a1m coshðtmz1Þ þ coshðtmz2Þ� �c11tmH 0ðtmrÞ þ ðc11 � c12Þ
1

r
H 1ðtmrÞ


 �
�

þtm½v1a1m coshðtmz1Þ þ v2 coshðtmz2Þ�H 0ðtmrÞ
�
B2m þ



½a2m coshðtmz1Þ þ coshðtmz3Þ�

� �c11tmH 0ðtmrÞ þ ðc11 � c12Þ
1

r
H 1ðtmrÞ


 �
þ tm½v1a2m coshðtmz1Þ þ v3 coshðtmz3Þ�H 0ðtmrÞ

�
B3m

�
ð38Þ
Using Eqs. (28a), (28b) and (A.11), rð2Þ
rr can be expressed as,
rð2Þ
rr ðr; zÞ ¼

X1
n¼1

C0nG3n þ
X3
i¼1

CinLin

" #
cos snzð Þ ð39Þ
where Cin(i = 0,1,2,3) are defined in the Appendix (Eqs. (A.17) and (A.18)).
All components of stresses and electric displacements involving the remaining boundary conditions are

now expressed in terms of the arbitrary functions B2m,B3m,G3n and Lin(i = 1,2,3). Assuming that the series
involving m and n indices converge for M and N terms, the remaining boundary conditions of the cylinder
have to be used to determine the (2M + 4N) unknown arbitrary functions appearing in the general solution.
Until now only the shear stress boundary condition is used and the remaining boundary conditions involv-
ing radial and vertical normal stresses and electric displacements can be used to determine the (2M + 4N)
arbitrary functions.

Now consider the boundary condition rrr = 0 at r = a, which can be expressed as,
ðrð1Þ
rr þ rð2Þ

rr þ rð0Þ
rr Þr¼a ¼ 0 ð40Þ
Noting that H1(tma) = 0, Eq. (38) is reduced to
rð1Þ
rr ða; zÞ ¼

X1
m¼1

t2m �c11ða1m coshðtmz1Þ þ coshðtmz2ÞÞ þ v1a1m coshðtmz1Þ þ v2 coshðtmz2Þ½ �B2mf

þ �c11ða2m coshðtmz1Þ þ coshðtmz3ÞÞ þ v1a2m coshðtmz1Þ þ v3 coshðtmz3Þ½ �B3mgH 0ðtmaÞ ð41Þ
In order to apply the boundary condition given by Eq. (40) at a constant r value, it is necessary to express
the variation of radial stress in the z-direction in terms of identical functions of z. To achieve this, the hyper-
bolic cosine terms in Eq. (41) are expressed in terms of a Fourier series of the following form:
coshðtmziÞ ¼ yðiÞ0 þ
X1
n¼1

yðiÞn cosðsnzÞ ði ¼ 1; 2; 3Þ ð42Þ
where
yðiÞ0 ¼ sinh tmhið Þ
hitm

; yðiÞn ¼ 2tm sinh tmhið Þ cos npð Þ
hi t2m þ kis2n
� � ð43Þ
Substitution of Eq. (42) in Eq. (41) makes the z-coordinate dependence of Eqs. (41) and (39) identical and
thus allows the grouping of terms with similar cosine functions. Then applying the boundary condition
given by Eq. (40) yields the following set of linear relationship between the arbitrary functions.
X3

i¼1
2ðc11 þ c12 � 2viÞA0i þ ðc12 � c11Þ

1

a2
B01 þ

X1
m¼1

t2mf½�c11ða1myð1Þ0 þ yð2Þ0 Þ þ v1a1my
ð1Þ
0 þ v2y

ð2Þ
0 �B2m

þ ½�c11ða2myð1Þ0 þ yð3Þ0 Þ þ v1a2my
ð1Þ
0 þ v3y

ð3Þ
0 �B3mgH 0ðtmaÞ ¼ 0 ð44aÞ
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X1
m¼1

t2m �c11 a1myð1Þn þ yð2Þn

� �
þ v1a1my

ð1Þ
n þ v2y

ð2Þ
n

� �
B2m

�

þ �c11 a2myð1Þn þ yð3Þn

� �
þ v1a2my

ð1Þ
n þ v3y

ð3Þ
n

� �
B3m

�
H 0ðtmaÞ þ C0nG3n þ

X3
i¼1

CinLin ¼ 0 ð44bÞ
Next, it is straightforward to apply the boundary condition rrr = 0 at r = 1. Noting that H 1ðtmÞ ¼ 0; rð1Þ
rr at

r = 1 can be obtained simply by replacing �a� in Eq. (41) by �1�. Then using Eqs. (42), (43) and (39), the fol-
lowing linear relationships between the arbitrary coefficients are obtained.
X3
i¼1

2ðc11 þ c12 � 2viÞA0i þ ðc12 � c11ÞB01 þ
X1
m¼1

t2m �c11 a1my
ð1Þþyð2Þ

0
0

� �
þ v1a1my

ð1Þ
0 þ v2y

ð2Þ
0


 �
B2m

�

þ �c11 a2my
ð1Þ
0 þ yð3Þ0

� �
þ v1a2my

ð1Þ
0 þ v3y

ð3Þ
0

h i
B3m

�
H 0ðtmÞ ¼ 0 ð45aÞ

X1
m¼1

t2m �c11 a1myð1Þn þ yð2Þn

� �
þ v1a1my

ð1Þ
n þ v2y

ð2Þ
n

� �
B2m

�

þ �c11 a2myð1Þn þ yð3Þn

� �
þ v1a2my

ð1Þ
n þ v3y

ð3Þ
n

� �
B3m

�
H 0ðtmÞ þ C0nG3n þ

X3
i¼1

CinLin ¼ 0 ð45bÞ
The boundary condition Dr = 0 at r = a, 1 can be expressed as,
Dð1Þ
r þ Dð2Þ

r þ Dð0Þ
r

� �
r¼a

¼ 0; Dð1Þ
r þ Dð2Þ

r þ Dð0Þ
r

� �
r¼1 ¼ 0 ð46Þ
Noting that Dð1Þ
r ða; zÞ ¼ 0, Dð1Þ

r ð1; zÞ ¼ 0 and Dð0Þ
r ¼ 0, Eq. (46) reduces to,
Dð2Þ
r ða; zÞ ¼ 0; Dð2Þ

r ð1; zÞ ¼ 0 ð47Þ

Substitution of Eq. (47) in Eq. (36) yields the following set of linear relations between the arbitrary
functions
c2ðaÞn0 � c3ðaÞ
c1ðaÞ

-1ðaÞ � n0-2ðaÞ þ -3ðaÞ
� �

G3n þ
X3
i¼1

c2ðaÞni þ jiðaÞ
c1ðaÞ

-1ðaÞ � ni-2ðaÞ � qiðaÞ
� �

Lin ¼ 0

ð48aÞ

c2ðaÞn0 � c3ðaÞ
c1ðaÞ

-1ð1Þ � n0-2ð1Þ þ -3ð1Þ
� �

G3n þ
X3
i¼1

c2ðaÞni þ jiðaÞ
c1ðaÞ

-1ð1Þ � ni-2ð1Þ � qið1Þ
� �

Lin ¼ 0

ð48bÞ

Next, consider the boundary condition rzz = �p(r) at z = ±h which can be expressed as,
rð1Þ
zz þ rð2Þ

zz þ rð0Þ
zz

� �
z¼
h

¼ �pðrÞ ð49Þ
In order to apply Eq. (49), it is necessary to transform each term of Eq. (49) to identical functional vari-
ations of the radial coordinate. To achieve this, first expand p(r) into a Fourier–Bessel series of the follow-
ing form.
pðrÞ ¼ P 0 þ
X1
m¼1

PmH 0ðtmrÞ ð50Þ
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where
P 0 ¼
2
R 1
a pðrÞrdr
1� a2

; Pm ¼
R 1
a pðrÞrH 0ðtmrÞdrR 1

a rH 2
0ðtmrÞdr

ð51Þ
Then express the Bessel and the modified Bessel functions of the second kind, i.e. I0(snri) and
K0(snri)(i = 1,2,3), in Eq. (32) in terms of Fourier–Bessel series as,
I0ðsnriÞ ¼ lðiÞ0 þ
X1
m¼1

lðiÞm H 0ðtmrÞ; K0ðsnriÞ ¼ dðiÞ
0 þ

X1
m¼1

dðiÞ
m H 0ðtmrÞ ði ¼ 1; 2; 3Þ ð52Þ
where
lðiÞ0 ¼ ��I1ð
ffiffiffiffi
ki

p
snÞ þ aI1ð

ffiffiffiffi
ki

p
snaÞffiffiffiffi

ki

p
sn

2

1� a2
; lðiÞm ¼

R 1
a I0ðsnriÞrH 0ðtmrÞdrR 1

a rH 2
0ðtmrÞdr

ð53aÞ

dðiÞ
0 ¼ �K1ð

ffiffiffiffi
ki

p
snÞ þ aK1ð

ffiffiffiffi
ki

p
snaÞffiffiffiffi

ki

p
sn

2

1� a2
; dðiÞ

m ¼
R 1
a K0ðsnriÞrH 0ðtmrÞdrR 1

a rH 2
0ðtmrÞdr

ð53bÞ
Substitution of Eqs. (A.4), (30), (32), (50) and (52) in Eq. (49) yields the following linear relationships be-
tween the arbitrary coefficients.
4
X3
i¼1

tiA0i þ
X3
i¼1

tiki

X1
n¼1

s2nðl
ðiÞ
0 Gin þ dðiÞ

0 LinÞ cosðnpÞ ¼ P 0 ð54aÞ

t2mf½t1a1m coshðtmh1Þ þ t2 coshðtmh2Þ�B2m þ ½t1a2m coshðtmh1Þ þ t3 coshðtmh3Þ�B3mg

�
X1
n¼1

s2n

"
t1k1l

ð1Þ
m

c2ðaÞn0 � c3ðaÞ
c1ðaÞ

� t2k2l
ð2Þ
m n0 þ t3k3l

ð3Þ
m

� �
G3n

þ
X3
i¼1

t1k1l
ð1Þ
m

c2ðaÞni þ jiðaÞ
c1ðaÞ

� t2k2l
ð2Þ
m ni þ tikid

ðiÞ
m

� �
Lin

#
cosðnpÞ ¼ �Pm ð54bÞ
Finally, the remaining boundary condition Dz = 0 at z = ±h can be expressed as,
Dð1Þ
z þ Dð2Þ

z þ Dð0Þ
z

� �
z¼
h

¼ 0 ð55Þ
Substitution of Eqs. (A.5), (33), (34) and (52) in Eq. (55) yields the following linear relationships between
the arbitrary coefficients.
4
X3
i¼1

siA0i þ
X3
i¼1

siki

X1
n¼1

s2nðl
ðiÞ
0 Gin þ dðiÞ

0 LinÞ cosðnpÞ ¼ 0 ð56aÞ

t2mf½s1a1m coshðtmh1Þ þ s2 coshðtmh2Þ�B2m þ ½s1a2m coshðtmh1Þ þ s3 coshðtmh3Þ�B3mg

�
X1
n¼1

s2n

"
s1k1l

ð1Þ
m

c2ðaÞn0 � c3ðaÞ
c1ðaÞ

� s2k2l
ð2Þ
m n0 þ s3k3l

ð3Þ
m

� �
G3n

þ
X3
i¼1

s1k1l
ð1Þ
m

c2ðaÞni þ jiðaÞ
c1ðaÞ

� s2k2l
ð2Þ
m ni þ sikid

ðiÞ
m

� �
Lin

#
cos npð Þ ¼ 0 ð56bÞ
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The Eqs. (44b), (45b), (48a), (48b), (54b) and (56b) constitute a system of linear algebraic equations of order
(2M + 4N) with arbitrary constants B2m,B3m,G3n,L1n,L2n and L3n . This system can be solved numerically.
In addition, Eqs. (44a), (45a), (54a) and (56a) can be solved for the remaining four arbitrary constants
A0i(i = 1,2,3) and B01. This completes the solution of all arbitrary coefficients appearing in the general solu-
tion for the vertical loading case shown in Fig. 1.

3.1. Electric charge loading case

Now consider the case of a cylinder where electric charge loading of uniform intensity is applied to the
top and bottom surfaces over an annular ring of inner and outer radii equal to a and b0 respectively. The
boundary conditions can be expressed as follows,
rrrða; zÞ ¼ 0; rrzða; zÞ ¼ 0; Drða; zÞ ¼ 0 for � h 6 z 6 h ð57aÞ

rrrð1; zÞ ¼ 0; rrzð1; zÞ ¼ 0; Drð1; zÞ ¼ 0 for � h 6 z 6 h ð57bÞ

rzzðr;
hÞ ¼ 0; rzrðr;
hÞ ¼ 0; Dzðr;
hÞ ¼ �qðrÞ for a 6 r 6 1 ð57cÞ
where q(r) denotes the nondimensional magnitude of electric charge applied to the top and bottom surfaces
of the cylinder.

The solution of this problem is quite similar to that of a cylinder subjected to vertical pressure on top and
bottom surfaces. The only difference is for z = ± h, the vertical stress rzz is equal to zero for a 6 r 6 1 while
the vertical electric displacement is equal to �q(r) for a 6 r 6 1. Therefore, the Eqs. (54a) and (54b) are
changed to,
4
X3
i¼1

tiA0i þ
X3
i¼1

tiki

X1
n¼1

s2n lðiÞ0 Gin þ dðiÞ
0 Lin

� �
cosðnpÞ ¼ 0 ð58aÞ

t2mf½t1a1m coshðtmh1Þ þ t2 coshðtmh2Þ�B2m þ ½t1a2m coshðtmh1Þ þ t3 coshðtmh3Þ�B3mg

�
X1
n¼1

s2n

"
t1k1l

ð1Þ
m

c2ðaÞn0 � c3ðaÞ
c1ðaÞ

� t2k2l
ð2Þ
m n0 þ t3k3l

ð3Þ
m

� �
G3n

þ
X3
i¼1

t1k1l
ð1Þ
m

c2ðaÞni þ jiðaÞ
c1ðaÞ

� t2k2l
ð2Þ
m ni þ tikid

ðiÞ
m

� �
Lin

#
cosðnpÞ ¼ 0 ð58bÞ
Expand q(r) into a Fourier–Bessel series of the following form,
qðrÞ ¼ Q0 þ
X1
m¼1

QmH 0ðtmrÞ ð59Þ
where
Q0 ¼
2
R 1
a qðrÞrdr
1� a2

; Qm ¼
R 1
a qðrÞrH 0ðtmrÞdrR 1

a rH 2
0ðtmrÞdr

ð60Þ
Therefore, the Eqs. (56a) and (56b) are changed to,
4
X3
i¼1

siA0i þ
X3
i¼1

siki

X1
n¼1

s2nðl
ðiÞ
0 Gin þ dðiÞ

0 LinÞ cosðnpÞ ¼ Q0 ð61aÞ
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t2mf½s1a1m coshðtmh1Þ þ s2 coshðtmh2Þ�B2m þ ½s1a2m coshðtmh1Þ þ s3 coshðtmh3Þ�B3mg

�
X1
n¼1

s2n

"
s1k1l

ð1Þ
m

c2ðaÞn0 � c3ðaÞ
c1ðaÞ

� s2k2l
ð2Þ
m n0 þ s3k3l

ð3Þ
m

� �
G3n

þ
X3
i¼1

s1k1l
ð1Þ
m

c2ðaÞni þ jiðaÞ
c1ðaÞ

� s2k2l
ð2Þ
m ni þ sikid

ðiÞ
m

� �
Lin

#
cos npð Þ ¼ �Qm ð61bÞ
Eqs. (44b), (45b), (48a), (48b), (58b) and (61b) constitute a system of linear algebraic equations of order
(2M + 4N) with the arbitrary constants B2m,B3m,G3n,L1n,L2n and L3n. These equations can be solved
numerically. In addition, Eqs. (44a), (45a), (58a) and (61a) can be solved for the remaining four arbitrary
constants A0i(i = 1,2,3) and B01. This completes the solution of all arbitrary coefficients appearing in the
general solution for the electric charge loading case.
4. Numerical results and discussion

4.1. Comparison with elastic cylinders

Numerical stability of the present solution is first investigated by studying the convergence with respect
to the total number of terms used in the series expansion (N,M). The overall solution scheme is found to be
stable and convergent for a wide range of M and N values. The details of the convergence study are not
presented here for brevity and the values of M and N corresponding to each set of numerical results pre-
sented in this paper are given separately. Okumura (1989) analyzed the case of a transversely isotropic elas-
tic hollow cylinder subjected to an outer band of load by using analytical techniques. The geometry of the
hollow cylinder is such that b/a = 4, b/h = 1 and d/h = 0.3 where �h � denotes the half-width of the band
load. A magnesium cylinder [c11 = 5.64,c12 = 2.30,c13 = 1.81,c33 = 5.86,c44 = 1.68( · 1010Nm�2)] was
used in the numerical study. The boundary conditions used by Okumura (1989) are:
rrr ¼ 0; rrz ¼ 0; at r ¼ a ð62aÞ

rrr ¼
�p0 jzj 6 d

0 j z j> d

�
; rrz ¼ 0; at r ¼ b ð62bÞ

rzz ¼ 0; rzr ¼ 0; at z ¼ 
h ð62cÞ
The present general solution can be used to analyze the boundary-value problem considered by Okumura
(1989) by setting the piezoelectric coefficients to negligibly small values (eij � 0). Numerical solutions for
elastic hollow cylinders are found to converge for M = 11 and N = 11 for the loading conditions considered
by Okumura (1989). Fig. 2 shows a comparison of the current results with those obtained by Okumura. The
two solutions agree very closely. Note that vertical stress at z* = z/h = 1.0 has to be equal to zero because
of the boundary condition but both solutions (present and Okamura�s) are not exactly equal to zero at these
locations due to minor precision errors associated with the series solution.
4.2. Response of piezoelectric annular cylinder

4.2.1. Vertical pressure loading

Consider an annular cylinder subjected to a uniform vertical pressure ring load of intensity p0 over the
top and bottom surfaces (Fig. 1). The boundary conditions are expressed as,
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Fig. 2. Comparison of stresses along the z-axis of a hollow magnesium cylinder. (a) Nondimensional radial stress and
(b) nondimensional vertical stress.
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rrr ¼ 0; rrz ¼ 0; Dr ¼ 0; at r ¼ a ð63aÞ

rrr ¼ 0; rrz ¼ 0; Dr ¼ 0; at r ¼ b ð63bÞ

rzz ¼
�p0 a 6 r 6 b0
0 b0 6 r 6 b

�
; rzr ¼ 0; Dz ¼ 0; at z ¼ 
h ð63cÞ
In the numerical study, b0/b is set to 0.85 and different ratios of h/b (i.e. 0.5, 1.0, 2.0) and a/b (i.e. 0.3, 0.4, 0.5)
are considered. The material of the cylinder is PZT-5H [c11 = 12.6,c12 = 7.95,c13 = 8.41,c33 = 11.7,c44 = 2.3
(·1010Nm�2); e15 = 17.0,e31 = �6.55,e33 = 23.3 (Cm�2); e11 = 15.38, e33 = 12.76 ( · 10�9Fm�1)]. The roots
ki (i = 1,2,3) of Eq. (10) for PZT-5H are k1 = 0.82965,k2 = 0.65573 + 0.70611i and k3 = 0.65573�0.70611i.
Fig. 3 shows the nondimensional vertical stress, r�

zz ¼ rzz=p0, of a cylinder (h/b = 1) along the vertical direc-
tion (z* = z/b) at r* = 0.7 (r* = r/b) and along the radial direction at z = 0 and z/h = 0.5 for different a/b
ratios. Vertical stress remains compressive along the length and its magnitude decreases rapidly near the
loaded end. The magnitude of compressive vertical stress in the middle part of the cylinder decreases slowly
with decreasing thickness (increasing a/b ratio) and is nearly constant in the middle of the cylinder for thick
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. Vertical stress profiles of a PZT-5H annular cylinder under vertical loading (b0/b = 0.85,h/b = 1.0,M = N = 15).
ndimensional vertical stress along the z-axis at r = 0.7b and (b) nondimensional vertical stress along the r-axis at z = 0 and
.5.
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cylinders (a/b 6 0.3). Fig. 3(a) also shows the results for a cylinder with no piezoelectric coupling for the case
a/b = 0.5 and vertical stress of a piezoelectric cylinder is nearly identical (slightly smaller) to that of a non-
piezoelectric cylinder.

Fig. 3(b) shows the variation of vertical stress across the thickness of the cylinder at z/b = 0 and 0.5.
Vertical stress decreases rapidly across the thickness at z/b = 0.5 when compared to the mid-plane
(z = 0). The variation of vertical stress across the thickness is more gradual at the mid-plane and stress
at the inner surface is generally higher than that at the outer surface. This is probably a consequence of
the loading configuration. The vertical stress profiles corresponding to different wall thicknesses are nearly
parallel to each other at the mid-plane and a slight decrease in magnitude is noted with decreasing wall
thickness. If the stress state in the mid-plane is equal to the one-dimensional state corresponding to a long
cylinder then the stress profiles in Fig. 3(b) would be parallel to the r-axis and the magnitude equal to 0.69,
0.67 and 0.63 for a/b = 0.3, 0.4 and 0.5 respectively. The stress state of the cylinder is therefore three-dimen-
sional. The magnitude of vertical stress at the outer surface slightly decreases with decreasing wall
thickness.

Fig. 4(a) shows the nondimensional vertical electric displacement, D�
z ¼ Dzc44=e31p0, at r* = 0.7 due to

the vertical loading applied to the ends. D�
z is zero at the top end (boundary condition) and initially in-

creases rapidly with depth reaching its maximum value near z/b = 0.9 for the different cylinder wall thick-
nesses considered in the present study. The peak value of D�

z increases as the thickness of the cylinder
decreases. At the mid-plane of the cylinder D�

z is relatively small when compared to its maximum value
and the magnitude increases with decreasing cylinder thickness. Fig. 4(b) shows the variation of nondimen-
sional vertical electric field, E�

z ¼ Eze31=p0, at r* = 0.7. E�
z is negative along the length and decreases with

decreasing cylinder thickness. Negative vertical electric field has its minimum magnitude at the cylinder
ends, increases rapidly with depth near the ends and thereafter becomes nearly constant with depth. It is
noted that the electric field in the middle of the cylinder is about 8% higher than the one-dimensional value
obtained from the field equations. Note that 1-D solution for vertical electric field can be obtained by
inverting Eq. (1) numerically for PZT-5H and then using the 1-D stress field (only nonzero vertical stress)
to obtain the corresponding vertical electric field. It is found that 1-D solution for E�

z is equal to �0.0812.
The results in Fig. 4 show the direct piezoelectric effect and represent the typical quasi-static electric re-
sponse of a short annular cylinder when used as a sensor.
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Fig. 4. Vertical electric displacement and vertical electric field of a PZT-5H cylinder under vertical loading (b0/b = 0.85,
h/b = 1.0,M = N = 15). (a) Nondimensional vertical electric displacement along the z-axis at r = 0.7b. (b) Nondimensional vertical
electric field along the z-axis at r = 0.7b.
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4.3. Electric charge loading

Consider an annular cylinder subjected to uniform electric charge density q0 on the top and bottom sur-
faces. The boundary conditions can be expressed by Eqs. (63a), (63b) and
Fig. 5.
(a) No
along
Dz ¼
�q0 a 6 r 6 b0
0 b0 6 r 6 b

�
; rzz ¼ 0; rzr ¼ 0; at z ¼ 
h ð64Þ
Fig. 5(a) and (b) shows the variation of nondimensional vertical electric displacement, D�
z ¼ Dz=q0, along

the vertical and radial directions respectively. Nondimensional vertical electric displacement has a unit
magnitude at (boundary condition) and decreases rapidly near the top end. It is nearly constant within
the middle half of the cylinder and the magnitude increases slightly with increasing thickness of the cylinder.
Fig. 5(b) shows that D�

z is constant and approaches the 1-D solution in the mid-plane of the cylinder for the
three wall thicknesses considered in the present study, i.e. D�

z ¼ 0:70; 0:67 and 0.63 for a/b = 0.3, 0.4 and 0.5
respectively. However, at z/b = 0.5, the radial variation of D�

z across the cylinder wall is nonuniform with a
higher magnitude at the inner surface. It is noted that the variation of D�

z in the z- and r-directions is quite
similar to that observed for vertical stress under applied vertical pressure.

Fig. 6 shows the nondimensional vertical displacement, u�z ¼ uze31=bD0, along the z-axis at r = 0.7b for
different a/b ratios. Vertical displacement increases linearly along the z-axis (similar to an elastic cylinder
under tension) and reaches its maximum value at the ends of the cylinder. u�z is only slightly increased with
increasing cylinder thickness and this implies that the wall thickness of an annular actuator has a minor
influence on the stroke. Fig. 6 shows the converse piezoelectric effect of the cylinder associated with electric
loading. In more practical situations, the actuator has a mechanical bias load and is driven by a voltage
applied to circular electrodes placed at the cylinder ends. This case involves complex mixed-boundary con-
ditions that require a new formulation of the problem. However, the general solutions given by Eq. (19) can
be used to formulate this mixed boundary-value problem.

Fig. 7(a) shows the variation of nondimensional vertical stress, r�
zz ¼ rzze31=c44q0, in the z-direction at

r* = 0.7 for three different values of a/b. Vertical stress is zero at the loading surface due to the boundary
condition and is generally compressive inside the cylinder. It increases rapidly near the ends reaching a max-
imum value in the vicinity of z* = z/b = 0.8. Thereafter, vertical stress decreases rapidly with depth. The
magnitude of vertical stress increases with decreasing thickness of the annular cylinder. Fig. 7(b) shows
the variation of nondimensional vertical electric field, E�

z ¼ Eze231=c44q0, in the z-direction at r* = 0.7 and
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Vertical electric displacement of a PZT-5H annular cylinder under electric charge loading (b0/b = 0.85,h/b = 1.0,M = N = 15).
ndimensional vertical electric displacement along the z-axis at r = 0.7b and (b) nondimensional vertical electric displacement
the r-axis at z = 0 and z/h = 0.5.
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Fig. 6. Nondimensional vertical displacement along the z-axis at r = 0.7b of a PZT-5H annular cylinder under electric charge loading
(b0/b = 0.85,h/b = 1.0,M = N = 15).

Fig. 7. Vertical stress and electric field of a PZT-5H annular cylinder under electric charge loading (b0/b = 0.85,
h/b = 1.0,M = N = 15). (a) Nondimensional vertical stress along the z-axis at r = 0.7b and (b) nondimensional vertical electric field
along the z-axis at r = 0.7b.

 

Fig. 8. Vertical stress and displacement along the z-axis at r = 0.7b of a PZT-5H annular cylinder under electric charge loading
(b0/b = 0.85,a/b = 0.5). (a) Nondimensional vertical stress profiles along the z-axis at r = 0.7b and (b) nondimensional vertical
displacement profiles along the z-axis at r = 0.7b.
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Fig. 9. Vertical electric displacement and vertical electric field of a PZT-5H annular cylinder under electric charge loading
(b0/b = 0.85,a/b = 0.5). (a) Nondimensional vertical electric displacement profiles along the z-axis at r = 0.7b and (b) nondimensional
vertical electric field profiles along the z-axis at r = 0.7b.
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the behaviour is very similar to that of D�
z . The distribution of vertical stress and vertical electric field at the

mid-plane of the cylinder was also considered. It is found that r�
zz and E�

z are nearly constant at the mid-
plane if h/b P 1 and are nonuniform for shorter cylinders (h/b < 1) with peak values usually occurring near
or at the inside surface of the cylinder.

Figs. 8 and 9 show the variation of nondimensional vertical stress, vertical displacement, vertical electric
displacement and vertical electric field at r* = 0.7 for different cylinder lengths (h/b ratios). The solution
converges for M = 15 and N = 15 when h/b 6 1, and for M = 30 and N = 30 when h/b = 2. Vertical stress
is zero at the top surface due to the boundary condition. It is compressive and increases rapidly with depth
near the top surface and reduces to a negligible value in the middle of the cylinder for h/b > 1. Fig. 8(b)
implies that the average strain in the cylinder is nearly equal for the three different heights so the maximum
value of nondimensional vertical displacement is directly proportional to the length-radius ratio of the cyl-
inder. Fig. 9 indicates that both of D�

z , and E�
z decay rapidly with depth from the loaded end and approach

the 1-D solution for a long cylinder in the middle part of the cylinder when h/b P 2.
5. Conclusions

A generalized displacement potential function method together with a Fourier–Bessel series expansion is
successfully used to obtain the exact analytical general solution for fully coupled electroelastic field of an
annular piezoelectric cylinder of finite length subjected to axi-symmetric loading. The series solution shows
good numerical stability and convergence. Numerical solutions for stresses obtained from the present study
agree very closely with the existing solutions for the limiting case of an elastic cylinder. In the case of long
cylinders (h/b P 2) subjected to vertical end loads or end electric charge, vertical stress, vertical electric dis-
placement and vertical electric field are uniform in the middle part of the cylinder and are very close to the
one-dimensional solution. Both vertical electric displacement and electric field have their maximum values
near the loading surface under applied vertical pressure. Similarly, vertical stress is compressive and max-
imum near the cylinder ends under electric charge loading applied to the ends. Electroelastic field of a short
cylinder (h/b 6 1) is three-dimensional and shows complex dependence on geometry and material proper-
ties. The general solution derived in this paper can be used to analyze a variety of problems such as the
effective properties of a unit cell of a 1–3 piezocomposite, fracture mechanics of cylindrical actuators
and piezocomposites and other mixed boundary-value problems involving annular actuators and
resonators.
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Appendix A

The constants Xi(i = 1,2,3,4) appearing in Eq. (10) are defined by,
X1 ¼ e215c11 þ e11c11

X2 ¼ e11c213 þ 2e215c13 þ 2e11c13 þ 2e15c13 � 1� 2e33e15c11 � e33c11 � e11c33c11

X3 ¼ �e33c213 � 2e15e33c13 � 2e33c13 � 2e33c13 � 2e33 þ e233c11 þ 2e15c33 þ e215c33 þ e33c33c11 þ e11c33 þ c33

X4 ¼ �e233 � e33c33

ðA:1Þ
The solution for w has the following form depending on the nature of the roots ki(i = 1,2,3).
w ¼ w1 þ w2 þ w3 for k1 6¼ k2 6¼ k3

w ¼ w1 þ w2 þ zw3 for k1 6¼ k2 ¼ k3

w ¼ w1 þ zw2 þ z2w3 for k1 ¼ k2 ¼ k3

ðA:2Þ
The solutions for stresses and electric displacements corresponding to Eq. (19) can be expressed as,
rð0Þ
rr ðrÞ ¼ ðc12 � c11Þ

1

r2
B01 þ

X3
i¼1

2ðc11 þ c12 � 2viÞA0i ðA:3Þ

rð0Þ
zz ¼ �4

X3
i¼1

tiA0i; rð0Þ
zr ¼ 0 ðA:4Þ

Dð0Þ
z ¼ �4

X3
i¼1

siA0i; Dð0Þ
r ¼ 0 ðA:5Þ

rð1Þ
rr ðr; zÞ ¼

X3
i¼1

X1
m¼1

tm ð�c11 þ viÞtmJ 0ðtmrÞ þ ðc11 � c12Þ
1

r
J 1ðtmrÞ


 �
Aim

�

þ ð�c11 þ viÞtmY 0ðtmrÞ þ ðc11 � c12Þ
1

r
Y 1ðtmrÞ


 �
Bim

�
coshðtmziÞ ðA:6Þ

rð1Þ
zz ðr; zÞ ¼

X3
i¼1

ti

X1
m¼1

t2m½AimJ 0ðtmrÞ þ BimY 0ðtmrÞ� coshðtmziÞ ðA:7Þ

rð1Þ
zr ðr; zÞ ¼ �

X3
i¼1

#i

X1
m¼1

t2m½AimJ 1ðtmrÞ þ BimY 1ðtmrÞ� sinhðtmziÞ ðA:8Þ
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Dð1Þ
r ðr; zÞ ¼ �

X3
i¼1

1i

X1
m¼1

t2m½AimJ 1ðtmrÞ þ BimY 1ðtmrÞ� sinhðtmziÞ ðA:9Þ

Dð1Þ
z ðr; zÞ ¼

X3
i¼1

si

X1
m¼1

t2m½AimJ 0ðtmrÞ þ BimY 0ðtmrÞ� coshðtmziÞ ðA:10Þ

rð2Þ
rr ðr; zÞ ¼

X3
i¼1

X1
n¼1

ffiffiffiffi
ki

p
sn ðc11 � viÞ

ffiffiffiffi
ki

p
snI0ðsnriÞ þ ðc12 � c11Þ

1

r
I1ðsnriÞ


 �
Gin

�

þ ðc11 þ viÞ
ffiffiffiffi
ki

p
snK0ðsnriÞ � ðc12 � c11Þ

1

r
K1ðsnriÞ


 �
Lin

�
cosðsnzÞ ðA:11Þ

rð2Þ
zz ðr; zÞ ¼ �

X3
i¼1

ti

X1
n¼1

kis2n½GinI0ðsnriÞ þ LinK0ðsnriÞ� cosðsnzÞ ðA:12Þ

rð2Þ
zr ðr; zÞ ¼ �

X3
i¼1

#i

X1
n¼1

kis2n½GinI1ðsnriÞ � LinK1ðsnriÞ� sinðsnzÞ ðA:13Þ

Dð2Þ
r ðr; zÞ ¼ �

X3
i¼1

1i

X1
n¼1

kis2n½GinI1ðsnriÞ � LinK1ðsnriÞ� sinðsnzÞ ðA:14Þ

Dð2Þ
z ðr; zÞ ¼ �

X3
i¼1

si

X1
n¼1

kis2n½GinI0ðsnriÞ þ LinK0ðsnriÞ� cosðsnzÞ ðA:15Þ
where
vi ¼ ðc13k1i þ k2iÞ=ki; ti ¼ ðc33k1i þ e33k2iÞ=ki � c13; #i ¼ ð1þ k1i þ e15k2iÞ=
ffiffiffiffi
ki

p
1i ¼ ðe15 þ e15k1i � e11k2iÞ=

ffiffiffiffi
ki

p
; si ¼ ðe33k1i � e33k2iÞ=ki � 1 ði ¼ 1; 2; 3Þ

ðA:16Þ
And Cin(i = 0,1,2,3) appearing in Eq. (39) are defined as
C0n ¼
c2ðaÞn0 � c3ðaÞ

c1ðaÞ
ffiffiffiffiffi
k1

p
sn ðc11 � v1Þ

ffiffiffiffiffi
k1

p
snI0ðsnr1Þ þ ðc12 � c11Þ

1

r
I1ðsnr1Þ


 �

� n0
ffiffiffiffiffi
k2

p
sn ðc11 � v2Þ

ffiffiffiffiffi
k2

p
snI0ðsnr2Þ þ ðc12 � c11Þ

1

r
I1ðsnr2Þ


 �

þ
ffiffiffiffiffi
k3

p
sn ðc11 � v3Þ

ffiffiffiffiffi
k3

p
snI0ðsnr3Þ þ ðc12 � c11Þ

1

r
I1ðsnr3Þ


 �
ðA:17Þ

Cin ¼
c2ðaÞni � c3ðaÞ

c1ðaÞ
ffiffiffiffiffi
k1

p
sn ðc11 � v1Þ

ffiffiffiffiffi
k1

p
snI0ðsnr1Þ þ ðc12 � c11Þ
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r
I1ðsnr1Þ


 �

� ni
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p
sn ðc11 � v2Þ

ffiffiffiffiffi
k2

p
snI0ðsnr2Þðc12 � c11Þ
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r
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p
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